Source code for PEPit.examples.composite_convex_minimization.accelerated_douglas_rachford_splitting

from PEPit import PEP
from PEPit.functions import SmoothStronglyConvexFunction
from PEPit.functions import ConvexFunction
from PEPit.primitive_steps import proximal_step


[docs] def wc_accelerated_douglas_rachford_splitting(mu, L, alpha, n, wrapper="cvxpy", solver=None, verbose=1): """ Consider the composite convex minimization problem .. math:: F_\\star \\triangleq \\min_x \\{F(x) \\equiv f_1(x) + f_2(x)\\}, where :math:`f_1` is closed convex and proper, and :math:`f_2` is :math:`L`-smooth and :math:`\\mu`-strongly convex. This code computes a worst-case guarantee for **accelerated Douglas-Rachford**. That is, it computes the smallest possible :math:`\\tau(n, L, \\mu, \\alpha)` such that the guarantee .. math:: F(y_n) - F(x_\\star) \\leqslant \\tau(n,L,\\mu,\\alpha) \\|w_0 - w_\\star\\|^2 is valid, :math:`\\alpha` is a parameter of the method, and where :math:`y_n` is the output of the accelerated Douglas-Rachford Splitting method, where :math:`x_\\star` is a minimizer of :math:`F`, and :math:`w_\\star` defined such that .. math:: x_\\star = \\mathrm{prox}_{\\alpha f_2}(w_\\star) is an optimal point. In short, for given values of :math:`n`, :math:`L`, :math:`\\mu`, :math:`\\alpha`, :math:`\\tau(n, L, \\mu, \\alpha)` is computed as the worst-case value of :math:`F(y_n)-F_\\star` when :math:`\|w_0 - w_\\star\|^2 \\leqslant 1`. **Algorithm**: The accelerated Douglas-Rachford splitting is described in [1, Section 4]. For :math:`t \\in \\{0, \\dots, n-1\\}`, .. math:: :nowrap: \\begin{eqnarray} x_{t} & = & \\mathrm{prox}_{\\alpha f_2} (u_t),\\\\ y_{t} & = & \\mathrm{prox}_{\\alpha f_1}(2x_t-u_t),\\\\ w_{t+1} & = & u_t + \\theta (y_t-x_t),\\\\ u_{t+1} & = & \\left\\{\\begin{array}{ll} w_{t+1}+\\frac{t-1}{t+2}(w_{t+1}-w_t)\, & \\text{if } t >1,\\\\ w_{t+1} & \\text{otherwise.} \\end{array}\\right. \\end{eqnarray} **Theoretical guarantee**: There is no known worst-case guarantee for this method beyond quadratic minimization. For quadratics, an **upper** bound on is provided by [1, Theorem 5]: .. math:: F(y_n) - F_\\star \\leqslant \\frac{2}{\\alpha \\theta (n + 3)^ 2} \|w_0-w_\\star\|^2, when :math:`\\theta=\\frac{1-\\alpha L}{1+\\alpha L}` and :math:`\\alpha < \\frac{1}{L}`. **References**: An analysis of the accelerated Douglas-Rachford splitting is available in [1, Theorem 5] for when the convex minimization problem is quadratic. `[1] P. Patrinos, L. Stella, A. Bemporad (2014). Douglas-Rachford splitting: Complexity estimates and accelerated variants. In 53rd IEEE Conference on Decision and Control (CDC). <https://arxiv.org/pdf/1407.6723.pdf>`_ Args: mu (float): the strong convexity parameter. L (float): the smoothness parameter. alpha (float): the parameter of the scheme. n (int): the number of iterations. wrapper (str): the name of the wrapper to be used. solver (str): the name of the solver the wrapper should use. verbose (int): level of information details to print. - -1: No verbose at all. - 0: This example's output. - 1: This example's output + PEPit information. - 2: This example's output + PEPit information + solver details. Returns: pepit_tau (float): worst-case value. theoretical_tau (float): theoretical value (upper bound for quadratics; not directly comparable). Example: >>> pepit_tau, theoretical_tau = wc_accelerated_douglas_rachford_splitting(mu=.1, L=1, alpha=.9, n=2, wrapper="cvxpy", solver=None, verbose=1) (PEPit) Setting up the problem: size of the Gram matrix: 9x9 (PEPit) Setting up the problem: performance measure is the minimum of 1 element(s) (PEPit) Setting up the problem: Adding initial conditions and general constraints ... (PEPit) Setting up the problem: initial conditions and general constraints (1 constraint(s) added) (PEPit) Setting up the problem: interpolation conditions for 2 function(s) Function 1 : Adding 12 scalar constraint(s) ... Function 1 : 12 scalar constraint(s) added Function 2 : Adding 12 scalar constraint(s) ... Function 2 : 12 scalar constraint(s) added (PEPit) Setting up the problem: additional constraints for 0 function(s) (PEPit) Compiling SDP (PEPit) Calling SDP solver (PEPit) Solver status: optimal (wrapper:cvxpy, solver: MOSEK); optimal value: 0.192914822762597 (PEPit) Primal feasibility check: The solver found a Gram matrix that is positive semi-definite up to an error of 6.655442687317297e-09 All the primal scalar constraints are verified up to an error of 1.4452059383419924e-08 (PEPit) Dual feasibility check: The solver found a residual matrix that is positive semi-definite All the dual scalar values associated with inequality constraints are nonnegative (PEPit) The worst-case guarantee proof is perfectly reconstituted up to an error of 7.332087161994639e-08 (PEPit) Final upper bound (dual): 0.19291482672195612 and lower bound (primal example): 0.192914822762597 (PEPit) Duality gap: absolute: 3.959359118343997e-09 and relative: 2.0523871943300208e-08 *** Example file: worst-case performance of the Accelerated Douglas Rachford Splitting in function values *** PEPit guarantee: F(y_n)-F_* <= 0.192915 ||x0 - ws||^2 Theoretical guarantee for quadratics: F(y_n)-F_* <= 1.68889 ||x0 - ws||^2 """ # Instantiate PEP problem = PEP() # Declare a convex function and a smooth strongly convex function func1 = problem.declare_function(ConvexFunction) func2 = problem.declare_function(SmoothStronglyConvexFunction, mu=mu, L=L) # Define the function to optimize as the sum of func1 and func2 func = func1 + func2 # Start by defining its unique optimal point xs = x_* and its function value fs = F(x_*) xs = func.stationary_point() fs = func(xs) g1s, _ = func1.oracle(xs) g2s, _ = func2.oracle(xs) # Then define the starting point x0 of the algorithm and its function value f0 x0 = problem.set_initial_point() # Set the parameters of the scheme theta = (1 - alpha * L) / (1 + alpha * L) # Set the initial constraint that is the distance between x0 and ws = w^* ws = xs + alpha * g2s problem.set_initial_condition((ws - x0) ** 2 <= 1) # Compute n steps of the Accelerated Douglas Rachford Splitting starting from x0 x = [x0 for _ in range(n)] w = [x0 for _ in range(n + 1)] u = [x0 for _ in range(n + 1)] for i in range(n): x[i], _, _ = proximal_step(u[i], func2, alpha) y, _, fy = proximal_step(2 * x[i] - u[i], func1, alpha) w[i + 1] = u[i] + theta * (y - x[i]) if i >= 1: u[i + 1] = w[i + 1] + (i - 1) / (i + 2) * (w[i + 1] - w[i]) else: u[i + 1] = w[i + 1] # Set the performance metric to the final distance in function values to optimum problem.set_performance_metric(func2(y) + fy - fs) # Solve the PEP pepit_verbose = max(verbose, 0) pepit_tau = problem.solve(wrapper=wrapper, solver=solver, verbose=pepit_verbose) # Compute theoretical guarantee (for comparison) if alpha < 1 / L: theoretical_tau = 2 / (alpha * theta * (n + 3) ** 2) else: theoretical_tau = None # Print conclusion if required if verbose != -1: print('*** Example file:' ' worst-case performance of the Accelerated Douglas Rachford Splitting in function values ***') print('\tPEPit guarantee:\t\t\t F(y_n)-F_* <= {:.6} ||x0 - ws||^2'.format(pepit_tau)) if alpha < 1 / L: print('\tTheoretical guarantee for quadratics:\t F(y_n)-F_* <= {:.6} ||x0 - ws||^2'.format(theoretical_tau)) # Return the worst-case guarantee of the evaluated method (and the upper theoretical value) return pepit_tau, theoretical_tau
if __name__ == "__main__": pepit_tau, theoretical_tau = wc_accelerated_douglas_rachford_splitting(mu=.1, L=1, alpha=.9, n=2, wrapper="cvxpy", solver=None, verbose=1)