Source code for PEPit.examples.composite_convex_minimization.improved_interior_algorithm

import numpy as np

from PEPit import PEP
from PEPit.functions import SmoothConvexFunction
from PEPit.functions import StronglyConvexFunction
from PEPit.functions import ConvexIndicatorFunction
from PEPit.primitive_steps import bregman_gradient_step


[docs] def wc_improved_interior_algorithm(L, mu, c, lam, n, wrapper="cvxpy", solver=None, verbose=1): """ Consider the composite convex minimization problem .. math:: F_\\star \\triangleq \\min_x \\{F(x) \\equiv f_1(x) + f_2(x)\\}, where :math:`f_1` is a :math:`L`-smooth convex function, and :math:`f_2` is a closed convex indicator function. We use a kernel function :math:`h` that is assumed to be closed, proper, and strongly convex (see [1, Section 5]). This code computes a worst-case guarantee for **Improved interior gradient algorithm** (IGA). That is, it computes the smallest possible :math:`\\tau(\\mu,L,c,\\lambda,n)` such that the guarantee .. math:: F(x_n) - F(x_\\star) \\leqslant \\tau(\\mu,L,c,\\lambda,n) (c D_h(x_\\star;x_0) + f_1(x_0) - f_1(x_\\star)) is valid, where :math:`x_n` is the output of the IGA and where :math:`x_\\star` is a minimizer of :math:`F` and :math:`D_h` is the Bregman distance generated by :math:`h`. In short, for given values of :math:`\\mu`, :math:`L`, :math:`c`, :math:`\\lambda` and :math:`n`, :math:`\\tau(\\mu,L,c,\\lambda,n)` is computed as the worst-case value of :math:`F(x_n)-F_\\star` when :math:`c D_h(x_\\star;x_0) + f_1(x_0) - f_1(x_\\star)\\leqslant 1`. **Algorithm**: The IGA is described in [1, "Improved Interior Gradient Algorithm"]. For :math:`t \\in \\{0, \\dots, n-1\\}`, .. math:: :nowrap: \\begin{eqnarray} \\alpha_t & = & \\frac{\\sqrt{(c_t\\lambda)^2+4c_t\\lambda}-\\lambda c_t}{2},\\\\ y_t & = & (1-\\alpha_t) x_t + \\alpha_t z_t,\\\\ c_{t+1} & = & (1-\\alpha_t)c_t,\\\\ z_{t+1} & = & \\arg\\min_{z} \\left\\{ \\left< z;\\frac{\\alpha_t}{c_{t+1}}\\nabla f_1(y_t)\\right> +f_2(z)+D_h(z;z_t)\\right\\}, \\\\ x_{t+1} & = & (1-\\alpha_t) x_t + \\alpha_t z_{t+1}. \\end{eqnarray} **Theoretical guarantee**: The following **upper** bound can be found in [1, Theorem 5.2]: .. math:: F(x_n) - F_\\star \\leqslant \\frac{4L}{c n^2}\\left(c D_h(x_\\star;x_0) + f_1(x_0) - f_1(x_\\star) \\right). **References**: `[1] A. Auslender, M. Teboulle (2006). Interior gradient and proximal methods for convex and conic optimization. SIAM Journal on Optimization 16.3 (2006): 697-725. <https://epubs.siam.org/doi/pdf/10.1137/S1052623403427823>`_ Args: L (float): the smoothness parameter. mu (float): the strong-convexity parameter. c (float): initial value. lam (float): the step-size. n (int): number of iterations. wrapper (str): the name of the wrapper to be used. solver (str): the name of the solver the wrapper should use. verbose (int): level of information details to print. - -1: No verbose at all. - 0: This example's output. - 1: This example's output + PEPit information. - 2: This example's output + PEPit information + solver details. Returns: pepit_tau (float): worst-case value. theoretical_tau (float): theoretical value. Example: >>> L = 1 >>> lam = 1 / L >>> pepit_tau, theoretical_tau = wc_improved_interior_algorithm(L=L, mu=1, c=1, lam=lam, n=5, wrapper="cvxpy", solver=None, verbose=1) (PEPit) Setting up the problem: size of the Gram matrix: 22x22 (PEPit) Setting up the problem: performance measure is the minimum of 1 element(s) (PEPit) Setting up the problem: Adding initial conditions and general constraints ... (PEPit) Setting up the problem: initial conditions and general constraints (1 constraint(s) added) (PEPit) Setting up the problem: interpolation conditions for 3 function(s) Function 1 : Adding 42 scalar constraint(s) ... Function 1 : 42 scalar constraint(s) added Function 2 : Adding 49 scalar constraint(s) ... Function 2 : 49 scalar constraint(s) added Function 3 : Adding 42 scalar constraint(s) ... Function 3 : 42 scalar constraint(s) added (PEPit) Setting up the problem: additional constraints for 0 function(s) (PEPit) Compiling SDP (PEPit) Calling SDP solver (PEPit) Solver status: optimal (wrapper:cvxpy, solver: MOSEK); optimal value: 0.06807717876241919 (PEPit) Primal feasibility check: The solver found a Gram matrix that is positive semi-definite All the primal scalar constraints are verified (PEPit) Dual feasibility check: The solver found a residual matrix that is positive semi-definite All the dual scalar values associated with inequality constraints are nonnegative (PEPit) The worst-case guarantee proof is perfectly reconstituted up to an error of 2.9786985790819003e-08 (PEPit) Final upper bound (dual): 0.06807717277007506 and lower bound (primal example): 0.06807717876241919 (PEPit) Duality gap: absolute: -5.992344120908655e-09 and relative: -8.802280338057462e-08 *** Example file: worst-case performance of the Improved interior gradient algorithm in function values *** PEPit guarantee: F(x_n)-F_* <= 0.0680772 (c * Dh(xs;x0) + f1(x0) - F_*) Theoretical guarantee: F(x_n)-F_* <= 0.111111 (c * Dh(xs;x0) + f1(x0) - F_*) """ # Instantiate PEP problem = PEP() # Declare three convex functions func1 = problem.declare_function(SmoothConvexFunction, L=L) func2 = problem.declare_function(ConvexIndicatorFunction, D=np.inf) h = problem.declare_function(StronglyConvexFunction, mu=mu, reuse_gradient=True) # Define the function to optimize as the sum of func1 and func2 func = func1 + func2 # Start by defining its unique optimal point xs = x_* and its function value fs = F(x_*) xs = func.stationary_point() fs = func(xs) ghs, hs = h.oracle(xs) # Then define the starting point x0 of the algorithm and its function value f0 x0 = problem.set_initial_point() gh0, h0 = h.oracle(x0) g10, f10 = func1.oracle(x0) # Compute n steps of the Improved Interior Algorithm starting from x0 x = x0 z = x0 g = g10 gh = gh0 ck = c for i in range(n): alphak = (np.sqrt((ck * lam) ** 2 + 4 * ck * lam) - lam * ck) / 2 ck = (1 - alphak) * ck y = (1 - alphak) * x + alphak * z if i >= 1: g, f = func1.oracle(y) z, _, _ = bregman_gradient_step(g, gh, h + func2, alphak / ck) x = (1 - alphak) * x + alphak * z gh, _ = h.oracle(z) # Set the initial constraint that is a Lyapunov distance between x0 and x^* problem.set_initial_condition((hs - h0 - gh0 * (xs - x0)) * c + f10 - fs <= 1) # Set the performance metric to the final distance in function values to optimum problem.set_performance_metric(func(x) - fs) # Solve the PEP pepit_verbose = max(verbose, 0) pepit_tau = problem.solve(wrapper=wrapper, solver=solver, verbose=pepit_verbose) if problem.wrapper.solver_name.casefold() != "mosek" and verbose > 0: print("\033[96m(PEPit) We recommend to use MOSEK solver. \033[0m") # Compute theoretical guarantee (for comparison) theoretical_tau = (4 * L) / (c * (n + 1) ** 2) # Print conclusion if required if verbose != -1: print('*** Example file:' ' worst-case performance of the Improved interior gradient algorithm in function values ***') print('\tPEPit guarantee:\t F(x_n)-F_* <= {:.6} (c * Dh(xs;x0) + f1(x0) - F_*)'.format(pepit_tau)) print('\tTheoretical guarantee:\t F(x_n)-F_* <= {:.6} (c * Dh(xs;x0) + f1(x0) - F_*)'.format(theoretical_tau)) # Return the worst-case guarantee of the evaluated method (and the upper theoretical value) return pepit_tau, theoretical_tau
if __name__ == "__main__": L = 1 lam = 1 / L pepit_tau, theoretical_tau = wc_improved_interior_algorithm(L=L, mu=1, c=1, lam=lam, n=5, wrapper="cvxpy", solver=None, verbose=1)