Source code for PEPit.examples.fixed_point_problems.halpern_iteration

from PEPit import PEP
from PEPit.operators import LipschitzOperator


[docs] def wc_halpern_iteration(n, wrapper="cvxpy", solver=None, verbose=1): """ Consider the fixed point problem .. math:: \\mathrm{Find}\\, x:\\, x = Ax, where :math:`A` is a non-expansive operator, that is a :math:`L`-Lipschitz operator with :math:`L=1`. This code computes a worst-case guarantee for the **Halpern Iteration**. That is, it computes the smallest possible :math:`\\tau(n)` such that the guarantee .. math:: \\|x_n - Ax_n\\|^2 \\leqslant \\tau(n) \\|x_0 - x_\\star\\|^2 is valid, where :math:`x_n` is the output of the **Halpern iteration**, and :math:`x_\\star` the fixed point of :math:`A`. In short, for a given value of :math:`n`, :math:`\\tau(n)` is computed as the worst-case value of :math:`\\|x_n - Ax_n\\|^2` when :math:`\\|x_0 - x_\\star\\|^2 \\leqslant 1`. **Algorithm**: The Halpern iteration can be written as .. math:: x_{t+1} = \\frac{1}{t + 2} x_0 + \\left(1 - \\frac{1}{t + 2}\\right) Ax_t. **Theoretical guarantee**: A **tight** worst-case guarantee for Halpern iteration can be found in [2, Theorem 2.1]: .. math:: \\|x_n - Ax_n\\|^2 \\leqslant \\left(\\frac{2}{n+1}\\right)^2 \\|x_0 - x_\\star\\|^2. **References**: The method was first proposed in [1]. The detailed analysis and tight bound are available in [2]. `[1] B. Halpern (1967). Fixed points of nonexpanding maps. American Mathematical Society, 73(6), 957–961. <https://www.ams.org/journals/bull/1967-73-06/S0002-9904-1967-11864-0/S0002-9904-1967-11864-0.pdf>`_ `[2] F. Lieder (2021). On the convergence rate of the Halpern-iteration. Optimization Letters, 15(2), 405-418. <http://www.optimization-online.org/DB_FILE/2017/11/6336.pdf>`_ Args: n (int): number of iterations. wrapper (str): the name of the wrapper to be used. solver (str): the name of the solver the wrapper should use. verbose (int): level of information details to print. - -1: No verbose at all. - 0: This example's output. - 1: This example's output + PEPit information. - 2: This example's output + PEPit information + solver details. Returns: pepit_tau (float): worst-case value theoretical_tau (float): theoretical value Example: >>> pepit_tau, theoretical_tau = wc_halpern_iteration(n=25, wrapper="cvxpy", solver=None, verbose=1) (PEPit) Setting up the problem: size of the Gram matrix: 28x28 (PEPit) Setting up the problem: performance measure is the minimum of 1 element(s) (PEPit) Setting up the problem: Adding initial conditions and general constraints ... (PEPit) Setting up the problem: initial conditions and general constraints (1 constraint(s) added) (PEPit) Setting up the problem: interpolation conditions for 1 function(s) Function 1 : Adding 351 scalar constraint(s) ... Function 1 : 351 scalar constraint(s) added (PEPit) Setting up the problem: additional constraints for 0 function(s) (PEPit) Compiling SDP (PEPit) Calling SDP solver (PEPit) Solver status: optimal (wrapper:cvxpy, solver: MOSEK); optimal value: 0.005917282090077699 (PEPit) Primal feasibility check: The solver found a Gram matrix that is positive semi-definite up to an error of 3.755174265259971e-09 All the primal scalar constraints are verified up to an error of 1.3075734314749177e-08 (PEPit) Dual feasibility check: The solver found a residual matrix that is positive semi-definite All the dual scalar values associated with inequality constraints are nonnegative up to an error of 4.4389586421813856e-09 (PEPit) The worst-case guarantee proof is perfectly reconstituted up to an error of 2.425619306975869e-07 (PEPit) Final upper bound (dual): 0.005917288963138354 and lower bound (primal example): 0.005917282090077699 (PEPit) Duality gap: absolute: 6.873060655332441e-09 and relative: 1.1615232383221049e-06 *** Example file: worst-case performance of Halpern Iterations *** PEPit guarantee: ||xN - AxN||^2 <= 0.00591729 ||x0 - x_*||^2 Theoretical guarantee: ||xN - AxN||^2 <= 0.00591716 ||x0 - x_*||^2 """ # Instantiate PEP problem = PEP() # Declare a non expansive operator A = problem.declare_function(LipschitzOperator, L=1.) # Start by defining its unique optimal point xs = x_* xs, _, _ = A.fixed_point() # Then define the starting point x0 of the algorithm x0 = problem.set_initial_point() # Set the initial constraint that is the difference between x0 and xs problem.set_initial_condition((x0 - xs) ** 2 <= 1) # Run n steps of Halpern Iterations x = x0 for i in range(n): x = 1 / (i + 2) * x0 + (1 - 1 / (i + 2)) * A.gradient(x) # Set the performance metric to distance between xN and AxN problem.set_performance_metric((x - A.gradient(x)) ** 2) # Solve the PEP pepit_verbose = max(verbose, 0) pepit_tau = problem.solve(wrapper=wrapper, solver=solver, verbose=pepit_verbose) # Compute theoretical guarantee (for comparison) theoretical_tau = (2 / (n + 1)) ** 2 # Print conclusion if required if verbose != -1: print('*** Example file: worst-case performance of Halpern Iterations ***') print('\tPEPit guarantee:\t ||xN - AxN||^2 <= {:.6} ||x0 - x_*||^2'.format(pepit_tau)) print('\tTheoretical guarantee:\t ||xN - AxN||^2 <= {:.6} ||x0 - x_*||^2'.format(theoretical_tau)) # Return the worst-case guarantee of the evaluated method (and the reference theoretical value) return pepit_tau, theoretical_tau
if __name__ == "__main__": pepit_tau, theoretical_tau = wc_halpern_iteration(n=25, wrapper="cvxpy", solver=None, verbose=1)