Source code for PEPit.examples.inexact_proximal_methods.partially_inexact_douglas_rachford_splitting

from PEPit import PEP
from PEPit.functions import ConvexFunction
from PEPit.functions import SmoothStronglyConvexFunction
from PEPit.primitive_steps import inexact_proximal_step
from PEPit.primitive_steps import proximal_step


[docs] def wc_partially_inexact_douglas_rachford_splitting(mu, L, n, gamma, sigma, wrapper="cvxpy", solver=None, verbose=1): """ Consider the composite strongly convex minimization problem, .. math:: F_\\star \\triangleq \min_x \\left\\{ F(x) \\equiv f(x) + g(x) \\right\\} where :math:`f` is :math:`L`-smooth and :math:`\\mu`-strongly convex, and :math:`g` is closed convex and proper. We denote by :math:`x_\\star = \\arg\\min_x F(x)` the minimizer of :math:`F`. The (exact) proximal operator of :math:`g`, and an approximate version of the proximal operator of :math:`f` are assumed to be available. This code computes a worst-case guarantee for a **partially inexact Douglas-Rachford Splitting** (DRS). That is, it computes the smallest possible :math:`\\tau(n,L,\\mu,\\sigma,\\gamma)` such that the guarantee .. math:: \\|z_{n} - z_\\star\\|^2 \\leqslant \\tau(n,L,\\mu,\\sigma,\\gamma) \\|z_0 - z_\\star\\|^2 is valid, where :math:`z_n` is the output of the DRS (initiated at :math:`x_0`), :math:`z_\\star` is its fixed point, :math:`\\gamma` is a step-size, and :math:`\\sigma` is the level of inaccuracy. **Algorithm**: The partially inexact Douglas-Rachford splitting under consideration is described by .. math:: :nowrap: \\begin{eqnarray} x_{t} && \\approx_{\\sigma} \\arg\\min_x \\left\\{ \\gamma f(x)+\\frac{1}{2} \\|x-z_t\\|^2 \\right\\},\\\\ y_{t} && = \\arg\\min_y \\left\\{ \\gamma g(y)+\\frac{1}{2} \\|y-(x_t-\\gamma \\nabla f(x_t))\\|^2 \\right\\},\\\\ z_{t+1} && = z_t + y_t - x_t. \\end{eqnarray} More precisely, the notation ":math:`\\approx_{\\sigma}`" correspond to require the existence of some :math:`e_{t}` such that .. math:: :nowrap: \\begin{eqnarray} x_{t} && = z_t - \\gamma (\\nabla f(x_t) - e_t),\\\\ y_{t} && = \\arg\\min_y \\left\\{ \\gamma g(y)+\\frac{1}{2} \\|y-(x_t-\\gamma \\nabla f(x_t))\\|^2 \\right\\},\\\\ && \\text{with } \|e_t\|^2 \\leqslant \\frac{\\sigma^2}{\\gamma^2}\|y_{t} - z_t + \\gamma \\nabla f(x_t) \|^2,\\\\ z_{t+1} && = z_t + y_t - x_t. \\end{eqnarray} **Theoretical guarantee**: The following **tight** theoretical bound is due to [2, Theorem 5.1]: .. math:: \|z_{n} - z_\\star\|^2 \\leqslant \max\\left(\\frac{1 - \\sigma + \\gamma \\mu \\sigma}{1 - \\sigma + \\gamma \\mu}, \\frac{\\sigma + (1 - \\sigma) \\gamma L}{1 + (1 - \\sigma) \\gamma L)}\\right)^{2n} \|z_0 - z_\\star\|^2. **References**: The method is from [1], its PEP formulation and the worst-case analysis from [2], see [2, Section 4.4] for more details. `[1] J. Eckstein and W. Yao (2018). Relative-error approximate versions of Douglas–Rachford splitting and special cases of the ADMM. Mathematical Programming, 170(2), 417-444. <https://link.springer.com/article/10.1007/s10107-017-1160-5>`_ `[2] M. Barre, A. Taylor, F. Bach (2020). Principled analyses and design of first-order methods with inexact proximal operators, arXiv 2006.06041v2. <https://arxiv.org/pdf/2006.06041v2.pdf>`_ Args: L (float): the smoothness parameter. mu (float): the strong convexity parameter. n (int): number of iterations. gamma (float): the step-size. sigma (float): noise parameter. wrapper (str): the name of the wrapper to be used. solver (str): the name of the solver the wrapper should use. verbose (int): level of information details to print. - -1: No verbose at all. - 0: This example's output. - 1: This example's output + PEPit information. - 2: This example's output + PEPit information + solver details. Returns: pepit_tau (float): worst-case value theoretical_tau (float): theoretical value Example: >>> pepit_tau, theoretical_tau = wc_partially_inexact_douglas_rachford_splitting(mu=.1, L=5, n=5, gamma=1.4, sigma=.2, wrapper="cvxpy", solver=None, verbose=1) (PEPit) Setting up the problem: size of the Gram matrix: 18x18 (PEPit) Setting up the problem: performance measure is the minimum of 1 element(s) (PEPit) Setting up the problem: Adding initial conditions and general constraints ... (PEPit) Setting up the problem: initial conditions and general constraints (1 constraint(s) added) (PEPit) Setting up the problem: interpolation conditions for 2 function(s) Function 1 : Adding 30 scalar constraint(s) ... Function 1 : 30 scalar constraint(s) added Function 2 : Adding 30 scalar constraint(s) ... Function 2 : 30 scalar constraint(s) added (PEPit) Setting up the problem: additional constraints for 1 function(s) Function 1 : Adding 10 scalar constraint(s) ... Function 1 : 10 scalar constraint(s) added (PEPit) Compiling SDP (PEPit) Calling SDP solver (PEPit) Solver status: optimal (wrapper:cvxpy, solver: MOSEK); optimal value: 0.2812061652921267 (PEPit) Primal feasibility check: The solver found a Gram matrix that is positive semi-definite up to an error of 7.538692070583704e-10 All the primal scalar constraints are verified up to an error of 2.1234433933425834e-09 (PEPit) Dual feasibility check: The solver found a residual matrix that is positive semi-definite All the dual scalar values associated with inequality constraints are nonnegative (PEPit) The worst-case guarantee proof is perfectly reconstituted up to an error of 2.755838881401962e-07 (PEPit) Final upper bound (dual): 0.2812061650995206 and lower bound (primal example): 0.2812061652921267 (PEPit) Duality gap: absolute: -1.9260609773752435e-10 and relative: -6.849284315563937e-10 *** Example file: worst-case performance of the partially inexact Douglas Rachford splitting *** PEPit guarantee: ||z_n - z_*||^2 <= 0.281206 ||z_0 - z_*||^2 Theoretical guarantee: ||z_n - z_*||^2 <= 0.281206 ||z_0 - z_*||^2 """ # Instantiate PEP problem = PEP() # Declare a convex and a smooth strongly convex function. f = problem.declare_function(SmoothStronglyConvexFunction, mu=mu, L=L) g = problem.declare_function(ConvexFunction) # Define the function to optimize as the sum of func1 and func2 F = f + g # Start by defining its unique optimal point xs = x_*, its function value fs = F(x_*) # and zs te fixed point of the operator. xs = F.stationary_point() zs = xs + gamma * f.gradient(xs) # Then define the starting point z0, that is the previous step of the algorithm. z0 = problem.set_initial_point() # Set the initial constraint that is the distance between z0 and zs = z_* problem.set_initial_condition((z0 - zs) ** 2 <= 1) # Compute n steps of the partially inexact Douglas Rachford Splitting starting from z0 z = z0 for _ in range(n): x, dfx, _, _, _, _, epsVar = inexact_proximal_step(z, f, gamma, opt='PD_gapII') y, _, _ = proximal_step(x - gamma * dfx, g, gamma) f.add_constraint(epsVar <= 1 / 2 * (sigma * (y - z + gamma * dfx)) ** 2) z = z + (y - x) # Set the performance metric to the final distance between zn and zs problem.set_performance_metric((z - zs) ** 2) # Solve the PEP pepit_verbose = max(verbose, 0) pepit_tau = problem.solve(wrapper=wrapper, solver=solver, verbose=pepit_verbose) # Compute theoretical guarantee (for comparison) theoretical_tau = max(((1 - sigma + gamma * mu * sigma) / (1 - sigma + gamma * mu)) ** 2, ((sigma + (1 - sigma) * gamma * L) / (1 + (1 - sigma) * gamma * L)) ** 2) ** n # Print conclusion if required if verbose != -1: print('*** Example file: worst-case performance of the partially inexact Douglas Rachford splitting ***') print('\tPEPit guarantee:\t ||z_n - z_*||^2 <= {:.6} ||z_0 - z_*||^2'.format(pepit_tau)) print('\tTheoretical guarantee:\t ||z_n - z_*||^2 <= {:.6} ||z_0 - z_*||^2'.format(theoretical_tau)) # Return the worst-case guarantee of the evaluated method (and the upper theoretical value) return pepit_tau, theoretical_tau
if __name__ == "__main__": pepit_tau, theoretical_tau = wc_partially_inexact_douglas_rachford_splitting(mu=.1, L=5, n=5, gamma=1.4, sigma=.2, wrapper="cvxpy", solver=None, verbose=1)