Source code for PEPit.examples.inexact_proximal_methods.relatively_inexact_proximal_point_algorithm

from math import sqrt

from PEPit import PEP
from PEPit.functions import ConvexFunction
from PEPit.primitive_steps import inexact_proximal_step


[docs] def wc_relatively_inexact_proximal_point_algorithm(n, gamma, sigma, wrapper="cvxpy", solver=None, verbose=1): """ Consider the (possibly non-smooth) convex minimization problem, .. math:: f_\\star \\triangleq \\min_x f(x) where :math:`f` is closed, convex, and proper. We denote by :math:`x_\\star` some optimal point of :math:`f` (hence :math:`0\\in\\partial f(x_\\star)`). We further assume that one has access to an inexact version of the proximal operator of :math:`f`, whose level of accuracy is controlled by some parameter :math:`\\sigma\\geqslant 0`. This code computes a worst-case guarantee for an **inexact proximal point method**. That is, it computes the smallest possible :math:`\\tau(n, \\gamma, \\sigma)` such that the guarantee .. math:: f(x_n) - f(x_\\star) \\leqslant \\tau(n, \\gamma, \\sigma) \\|x_0 - x_\\star\\|^2 is valid, where :math:`x_n` is the output of the method, :math:`\\gamma` is some step-size, and :math:`\\sigma` is the level of accuracy of the approximate proximal point oracle. **Algorithm**: The approximate proximal point method under consideration is described by .. math:: x_{t+1} \\approx_{\\sigma} \\arg\\min_x \\left\\{ \\gamma f(x)+\\frac{1}{2} \\|x-x_t\\|^2 \\right\\}, where the notation ":math:`\\approx_{\\sigma}`" corresponds to require the existence of some vector :math:`s_{t+1}\\in\\partial f(x_{t+1})` and :math:`e_{t+1}` such that .. math:: x_{t+1} = x_t - \\gamma s_{t+1} + e_{t+1} \\quad \\quad \\text{with }\\|e_{t+1}\\|^2 \\leqslant \\sigma^2\\|x_{t+1} - x_t\\|^2. We note that the case :math:`\\sigma=0` implies :math:`e_{t+1}=0` and this operation reduces to a standard proximal step with step-size :math:`\\gamma`. **Theoretical guarantee**: The following (empirical) upper bound is provided in [1, Section 3.5.1], .. math:: f(x_n) - f(x_\\star) \\leqslant \\frac{1 + \\sigma}{4 \\gamma n^{\\sqrt{1 - \\sigma^2}}}\\|x_0 - x_\\star\\|^2. **References**: The precise formulation is presented in [1, Section 3.5.1]. `[1] M. Barre, A. Taylor, F. Bach (2020). Principled analyses and design of first-order methods with inexact proximal operators. arXiv 2006.06041v2. <https://arxiv.org/pdf/2006.06041.pdf>`_ Args: n (int): number of iterations. gamma (float): the step-size. sigma (float): accuracy parameter of the proximal point computation. wrapper (str): the name of the wrapper to be used. solver (str): the name of the solver the wrapper should use. verbose (int): level of information details to print. - -1: No verbose at all. - 0: This example's output. - 1: This example's output + PEPit information. - 2: This example's output + PEPit information + solver details. Returns: pepit_tau (float): worst-case value theoretical_tau (float): theoretical value Example: >>> pepit_tau, theoretical_tau = wc_relatively_inexact_proximal_point_algorithm(n=8, gamma=10, sigma=.65, wrapper="cvxpy", solver=None, verbose=1) (PEPit) Setting up the problem: size of the Gram matrix: 18x18 (PEPit) Setting up the problem: performance measure is the minimum of 1 element(s) (PEPit) Setting up the problem: Adding initial conditions and general constraints ... (PEPit) Setting up the problem: initial conditions and general constraints (1 constraint(s) added) (PEPit) Setting up the problem: interpolation conditions for 1 function(s) Function 1 : Adding 72 scalar constraint(s) ... Function 1 : 72 scalar constraint(s) added (PEPit) Setting up the problem: additional constraints for 1 function(s) Function 1 : Adding 16 scalar constraint(s) ... Function 1 : 16 scalar constraint(s) added (PEPit) Compiling SDP (PEPit) Calling SDP solver (PEPit) Solver status: optimal (wrapper:cvxpy, solver: MOSEK); optimal value: 0.007678482388821737 (PEPit) Primal feasibility check: The solver found a Gram matrix that is positive semi-definite up to an error of 9.339211172115614e-09 All the primal scalar constraints are verified up to an error of 1.0034810280098137e-07 (PEPit) Dual feasibility check: The solver found a residual matrix that is positive semi-definite All the dual scalar values associated with inequality constraints are nonnegative (PEPit) The worst-case guarantee proof is perfectly reconstituted up to an error of 1.7290964880672109e-07 (PEPit) Final upper bound (dual): 0.007678489787312847 and lower bound (primal example): 0.007678482388821737 (PEPit) Duality gap: absolute: 7.398491109686378e-09 and relative: 9.635355966248009e-07 *** Example file: worst-case performance of an inexact proximal point method in distance in function values *** PEPit guarantee: f(x_n) - f(x_*) <= 0.00767849 ||x_0 - x_*||^2 Theoretical guarantee: f(x_n) - f(x_*) <= 0.00849444 ||x_0 - x_*||^2 """ # Instantiate PEP problem = PEP() # Declare a convex function. f = problem.declare_function(ConvexFunction) # Start by defining its unique optimal point xs = x_* xs = f.stationary_point() # Then define the starting point x0 x0 = problem.set_initial_point() # Set the initial constraint that is the distance between x0 and xs = x_* problem.set_initial_condition((x0 - xs) ** 2 <= 1) # Compute n steps of an inexact proximal point method starting from x0 x = [x0 for _ in range(n + 1)] for i in range(n): x[i + 1], _, fx, _, _, _, epsVar = inexact_proximal_step(x[i], f, gamma, opt='PD_gapII') f.add_constraint(epsVar <= (sigma * (x[i + 1] - x[i])) ** 2 / 2) # Set the performance metric to the final distance in function values problem.set_performance_metric(f(x[n]) - f(xs)) # Solve the PEP pepit_verbose = max(verbose, 0) pepit_tau = problem.solve(wrapper=wrapper, solver=solver, verbose=pepit_verbose) # Compute theoretical guarantee (for comparison) theoretical_tau = (1 + sigma) / (4 * gamma * n ** sqrt(1 - sigma ** 2)) # Print conclusion if required if verbose != -1: print('*** Example file:' ' worst-case performance of an inexact proximal point method in distance in function values ***') print('\tPEPit guarantee:\t f(x_n) - f(x_*) <= {:.6} ||x_0 - x_*||^2'.format(pepit_tau)) print('\tTheoretical guarantee:\t f(x_n) - f(x_*) <= {:.6} ||x_0 - x_*||^2'.format(theoretical_tau)) # Return the worst-case guarantee of the evaluated method (and the upper theoretical value) return pepit_tau, theoretical_tau
if __name__ == "__main__": pepit_tau, theoretical_tau = wc_relatively_inexact_proximal_point_algorithm(n=8, gamma=10, sigma=.65, wrapper="cvxpy", solver=None, verbose=1)