Source code for PEPit.examples.low_dimensional_worst_cases_scenarios.averaged_projections

from PEPit import PEP
from PEPit.functions import ConvexIndicatorFunction
from PEPit.primitive_steps import proximal_step


[docs] def wc_averaged_projections(n, wrapper="cvxpy", solver=None, verbose=1): """ Consider the convex feasibility problem: .. math:: \\mathrm{Find}\\, x\\in Q_1\\cap Q_2 where :math:`Q_1` and :math:`Q_2` are two closed convex sets. This code computes a worst-case guarantee for the **averaged projection method**, and looks for a low-dimensional worst-case example nearly achieving this worst-case guarantee. That is, it computes the smallest possible :math:`\\tau(n)` such that the guarantee .. math:: \\|\\mathrm{Proj}_{Q_1}(x_n)-\\mathrm{Proj}_{Q_2}(x_n)\\|^2 \\leqslant \\tau(n) \\|x_0 - x_\\star\\|^2 is valid, where :math:`x_n` is the output of the **averaged projection method**, and :math:`x_\\star\\in Q_1\\cap Q_2` is a solution to the convex feasibility problem. In short, for a given value of :math:`n`, :math:`\\tau(n)` is computed as the worst-case value of :math:`\\|\\mathrm{Proj}_{Q_1}(x_n)-\\mathrm{Proj}_{Q_2}(x_n)\\|^2` when :math:`\\|x_0 - x_\\star\\|^2 \\leqslant 1`. Then, it looks for a low-dimensional nearly achieving this performance. **Algorithm**: The averaged projection method can be written as .. math:: \\begin{eqnarray} x_{t+1} & = & \\frac{1}{2} \\left(\\mathrm{Proj}_{Q_1}(x_t) + \\mathrm{Proj}_{Q_2}(x_t)\\right). \\end{eqnarray} Args: n (int): number of iterations. wrapper (str): the name of the wrapper to be used. solver (str): the name of the solver the wrapper should use. verbose (int): level of information details to print. - -1: No verbose at all. - 0: This example's output. - 1: This example's output + PEPit information. - 2: This example's output + PEPit information + solver details. Returns: pepit_tau (float): worst-case value theoretical_tau (None): no theoretical value. Example: >>> pepit_tau, theoretical_tau = wc_averaged_projections(n=10, wrapper="cvxpy", solver=None, verbose=1) (PEPit) Setting up the problem: size of the Gram matrix: 25x25 (PEPit) Setting up the problem: performance measure is the minimum of 1 element(s) (PEPit) Setting up the problem: Adding initial conditions and general constraints ... (PEPit) Setting up the problem: initial conditions and general constraints (1 constraint(s) added) (PEPit) Setting up the problem: interpolation conditions for 2 function(s) Function 1 : Adding 144 scalar constraint(s) ... Function 1 : 144 scalar constraint(s) added Function 2 : Adding 144 scalar constraint(s) ... Function 2 : 144 scalar constraint(s) added (PEPit) Setting up the problem: additional constraints for 0 function(s) (PEPit) Compiling SDP (PEPit) Calling SDP solver (PEPit) Solver status: optimal (wrapper:cvxpy, solver: MOSEK); optimal value: 0.06844885734754097 (PEPit) Postprocessing: 4 eigenvalue(s) > 7.891514481701609e-10 before dimension reduction (PEPit) Calling SDP solver (PEPit) Solver status: optimal (solver: MOSEK); objective value: 0.06834885735342248 (PEPit) Postprocessing: 2 eigenvalue(s) > 6.225469110482089e-11 after 1 dimension reduction step(s) (PEPit) Solver status: optimal (solver: MOSEK); objective value: 0.06834885735342248 (PEPit) Postprocessing: 2 eigenvalue(s) > 6.225469110482089e-11 after dimension reduction (PEPit) Primal feasibility check: The solver found a Gram matrix that is positive semi-definite up to an error of 2.9433797563300196e-12 All the primal scalar constraints are verified up to an error of 1.8770332510520404e-12 (PEPit) Dual feasibility check: The solver found a residual matrix that is positive semi-definite All the dual scalar values associated with inequality constraints are nonnegative up to an error of 9.778816524040534e-13 (PEPit) The worst-case guarantee proof is perfectly reconstituted up to an error of 3.015729320638442e-10 (PEPit) Final upper bound (dual): 0.06844885735573535 and lower bound (primal example): 0.06834885735342248 (PEPit) Duality gap: absolute: 0.0001000000023128611 and relative: 0.0014630822838160252 *** Example file: worst-case performance of the averaged projection method *** PEPit guarantee: ||Proj_Q1 (xn) - Proj_Q2 (xn)||^2 == 0.0684489 ||x0 - x_*||^2 """ # Instantiate PEP problem = PEP() # Declare the two indicator functions and the feasibility problem ind_Q1 = problem.declare_function(ConvexIndicatorFunction) ind_Q2 = problem.declare_function(ConvexIndicatorFunction) func = ind_Q1 + ind_Q2 # Start by defining a solution xs = x_* xs = func.stationary_point() # Then define the starting point x0 of the algorithm x0 = problem.set_initial_point() # Run the averaged projection method x = x0 for _ in range(n): y1, _, _ = proximal_step(x, ind_Q1, 1) y2, _, _ = proximal_step(x, ind_Q2, 1) x = 1 / 2 * (y1 + y2) # Set the performance metric proj1_x, _, _ = proximal_step(x, ind_Q1, 1) proj2_x, _, _ = proximal_step(x, ind_Q2, 1) problem.set_performance_metric((proj2_x - proj1_x) ** 2) problem.set_initial_condition((x0 - xs) ** 2 <= 1) # Solve the PEP pepit_verbose = max(verbose, 0) pepit_tau = problem.solve(wrapper=wrapper, solver=solver, verbose=pepit_verbose, dimension_reduction_heuristic="logdet1") theoretical_tau = None # Print conclusion if required if verbose != -1: print('*** Example file: worst-case performance of the averaged projection method ***') print('\tPEPit guarantee:\t ||Proj_Q1 (xn) - Proj_Q2 (xn)||^2 == {:.6} ||x0 - x_*||^2'.format(pepit_tau)) # Return the worst-case guarantee of the evaluated method (and the reference theoretical value) return pepit_tau, theoretical_tau
if __name__ == "__main__": pepit_tau, theoretical_tau = wc_averaged_projections(n=10, wrapper="cvxpy", solver=None, verbose=1)