Source code for PEPit.examples.low_dimensional_worst_cases_scenarios.halpern_iteration

from PEPit import PEP
from PEPit.operators import LipschitzOperator


[docs] def wc_halpern_iteration(n, wrapper="cvxpy", solver=None, verbose=1): """ Consider the fixed point problem .. math:: \\mathrm{Find}\\, x:\\, x = Ax, where :math:`A` is a non-expansive operator, that is a :math:`L`-Lipschitz operator with :math:`L=1`. This code computes a worst-case guarantee for the **Halpern Iteration**, and looks for a low-dimensional worst-case example nearly achieving this worst-case guarantee. That is, it computes the smallest possible :math:`\\tau(n)` such that the guarantee .. math:: \\|x_n - Ax_n\\|^2 \\leqslant \\tau(n) \\|x_0 - x_\\star\\|^2 is valid, where :math:`x_n` is the output of the **Halpern iteration**, and :math:`x_\\star` the fixed point of :math:`A`. In short, for a given value of :math:`n`, :math:`\\tau(n)` is computed as the worst-case value of :math:`\\|x_n - Ax_n\\|^2` when :math:`\\|x_0 - x_\\star\\|^2 \\leqslant 1`. Then, it looks for a low-dimensional nearly achieving this performance. **Algorithm**: The Halpern iteration can be written as .. math:: x_{t+1} = \\frac{1}{t + 2} x_0 + \\left(1 - \\frac{1}{t + 2}\\right) Ax_t. **Theoretical guarantee**: A **tight** worst-case guarantee for Halpern iteration can be found in [1, Theorem 2.1]: .. math:: \\|x_n - Ax_n\\|^2 \\leqslant \\left(\\frac{2}{n+1}\\right)^2 \\|x_0 - x_\\star\\|^2. **References**: The detailed approach and tight bound are available in [1]. `[1] F. Lieder (2021). On the convergence rate of the Halpern-iteration. Optimization Letters, 15(2), 405-418. <http://www.optimization-online.org/DB_FILE/2017/11/6336.pdf>`_ `[2] F. Maryam, H. Hindi, S. Boyd (2003). Log-det heuristic for matrix rank minimization with applications to Hankel and Euclidean distance matrices. American Control Conference (ACC). <https://web.stanford.edu/~boyd/papers/pdf/rank_min_heur_hankel.pdf>`_ Args: n (int): number of iterations. wrapper (str): the name of the wrapper to be used. solver (str): the name of the solver the wrapper should use. verbose (int): level of information details to print. - -1: No verbose at all. - 0: This example's output. - 1: This example's output + PEPit information. - 2: This example's output + PEPit information + solver details. Returns: pepit_tau (float): worst-case value theoretical_tau (float): theoretical value Example: >>> pepit_tau, theoretical_tau = wc_halpern_iteration(n=10, wrapper="cvxpy", solver=None, verbose=1) (PEPit) Setting up the problem: size of the Gram matrix: 13x13 (PEPit) Setting up the problem: performance measure is the minimum of 1 element(s) (PEPit) Setting up the problem: Adding initial conditions and general constraints ... (PEPit) Setting up the problem: initial conditions and general constraints (1 constraint(s) added) (PEPit) Setting up the problem: interpolation conditions for 1 function(s) Function 1 : Adding 66 scalar constraint(s) ... Function 1 : 66 scalar constraint(s) added (PEPit) Setting up the problem: additional constraints for 0 function(s) (PEPit) Compiling SDP (PEPit) Calling SDP solver (PEPit) Solver status: optimal (wrapper:cvxpy, solver: MOSEK); optimal value: 0.03305790577349196 (PEPit) Postprocessing: 12 eigenvalue(s) > 0 before dimension reduction (PEPit) Calling SDP solver (PEPit) Solver status: optimal (solver: MOSEK); objective value: 0.033047905727429217 (PEPit) Postprocessing: 1 eigenvalue(s) > 3.494895432655832e-09 after 1 dimension reduction step(s) (PEPit) Solver status: optimal (solver: MOSEK); objective value: 0.03304790606633461 (PEPit) Postprocessing: 1 eigenvalue(s) > 0 after 2 dimension reduction step(s) (PEPit) Solver status: optimal (solver: MOSEK); objective value: 0.03304790577532096 (PEPit) Postprocessing: 1 eigenvalue(s) > 1.834729915591876e-13 after 3 dimension reduction step(s) (PEPit) Solver status: optimal (solver: MOSEK); objective value: 0.03304790577532096 (PEPit) Postprocessing: 1 eigenvalue(s) > 1.834729915591876e-13 after dimension reduction (PEPit) Primal feasibility check: The solver found a Gram matrix that is positive semi-definite up to an error of 1.3350847983797365e-12 All the primal scalar constraints are verified up to an error of 5.296318938974309e-13 (PEPit) Dual feasibility check: The solver found a residual matrix that is positive semi-definite All the dual scalar values associated with inequality constraints are nonnegative up to an error of 5.146036222356589e-09 (PEPit) The worst-case guarantee proof is perfectly reconstituted up to an error of 1.81631899443615e-07 (PEPit) Final upper bound (dual): 0.03305791391531532 and lower bound (primal example): 0.03304790577532096 (PEPit) Duality gap: absolute: 1.0008139994355236e-05 and relative: 0.00030283734353385173 *** Example file: worst-case performance of Halpern Iterations *** PEPit guarantee: ||xN - AxN||^2 == 0.0330579 ||x0 - x_*||^2 Theoretical guarantee: ||xN - AxN||^2 <= 0.0330579 ||x0 - x_*||^2 """ # Instantiate PEP problem = PEP() # Declare a non expansive operator A = problem.declare_function(LipschitzOperator, L=1.) # Start by defining its unique optimal point xs = x_* xs, _, _ = A.fixed_point() # Then define the starting point x0 of the algorithm x0 = problem.set_initial_point() # Set the initial constraint that is the difference between x0 and xs problem.set_initial_condition((x0 - xs) ** 2 <= 1) # Run n steps of Halpern Iterations x = x0 for i in range(n): x = 1 / (i + 2) * x0 + (1 - 1 / (i + 2)) * A.gradient(x) # Set the performance metric to distance between xN and AxN problem.set_performance_metric((x - A.gradient(x)) ** 2) # Solve the PEP pepit_verbose = max(verbose, 0) pepit_tau = problem.solve(wrapper=wrapper, solver=solver, verbose=pepit_verbose, dimension_reduction_heuristic="logdet3", tol_dimension_reduction=1e-5) # Compute theoretical guarantee (for comparison) theoretical_tau = (2 / (n + 1)) ** 2 # Print conclusion if required if verbose != -1: print('*** Example file: worst-case performance of Halpern Iterations ***') print('\tPEPit guarantee:\t ||xN - AxN||^2 == {:.6} ||x0 - x_*||^2'.format(pepit_tau)) print('\tTheoretical guarantee:\t ||xN - AxN||^2 <= {:.6} ||x0 - x_*||^2'.format(theoretical_tau)) # Return the worst-case guarantee of the evaluated method (and the reference theoretical value) return pepit_tau, theoretical_tau
if __name__ == "__main__": pepit_tau, theoretical_tau = wc_halpern_iteration(n=10, wrapper="cvxpy", solver=None, verbose=1)