Source code for PEPit.examples.low_dimensional_worst_cases_scenarios.optimized_gradient

from math import sqrt

from PEPit import PEP
from PEPit.functions import SmoothConvexFunction


[docs] def wc_optimized_gradient(L, n, wrapper="cvxpy", solver=None, verbose=1): """ Consider the minimization problem .. math:: f_\\star \\triangleq \\min_x f(x), where :math:`f` is :math:`L`-smooth and convex. This code computes a worst-case guarantee for **optimized gradient method** (OGM), and applies the trace heuristic for trying to find a low-dimensional worst-case example on which this guarantee is nearly achieved. That is, it computes the smallest possible :math:`\\tau(n, L)` such that the guarantee .. math:: f(x_n) - f_\\star \\leqslant \\tau(n, L) \\|x_0 - x_\\star\\|^2 is valid, where :math:`x_n` is the output of OGM and where :math:`x_\\star` is a minimizer of :math:`f`. Then, it applies the trace heuristic, which allows obtaining a one-dimensional function on which the guarantee is nearly achieved. **Algorithm**: The optimized gradient method is described by .. math:: :nowrap: \\begin{eqnarray} x_{t+1} & = & y_t - \\frac{1}{L} \\nabla f(y_t)\\\\ y_{t+1} & = & x_{t+1} + \\frac{\\theta_{t}-1}{\\theta_{t+1}}(x_{t+1}-x_t)+\\frac{\\theta_{t}}{\\theta_{t+1}}(x_{t+1}-y_t), \\end{eqnarray} with .. math:: :nowrap: \\begin{eqnarray} \\theta_0 & = & 1 \\\\ \\theta_t & = & \\frac{1 + \\sqrt{4 \\theta_{t-1}^2 + 1}}{2}, \\forall t \\in [|1, n-1|] \\\\ \\theta_n & = & \\frac{1 + \\sqrt{8 \\theta_{n-1}^2 + 1}}{2}. \\end{eqnarray} **Theoretical guarantee**: The **tight** theoretical guarantee can be found in [2, Theorem 2]: .. math:: f(x_n)-f_\\star \\leqslant \\frac{L\\|x_0-x_\\star\\|^2}{2\\theta_n^2}. **References**: The OGM was developed in [1,2]. Low-dimensional worst-case functions for OGM were obtained in [3, 4]. `[1] Y. Drori, M. Teboulle (2014). Performance of first-order methods for smooth convex minimization: a novel approach. Mathematical Programming 145(1–2), 451–482. <https://arxiv.org/pdf/1206.3209.pdf>`_ `[2] D. Kim, J. Fessler (2016). Optimized first-order methods for smooth convex minimization. Mathematical Programming 159.1-2: 81-107. <https://arxiv.org/pdf/1406.5468.pdf>`_ `[3] A. Taylor, J. Hendrickx, F. Glineur (2017). Smooth strongly convex interpolation and exact worst-case performance of first-order methods. Mathematical Programming, 161(1-2), 307-345. <https://arxiv.org/pdf/1502.05666.pdf>`_ `[4] D. Kim, J. Fessler (2017). On the convergence analysis of the optimized gradient method. Journal of Optimization Theory and Applications, 172(1), 187-205. <https://arxiv.org/pdf/1510.08573.pdf>`_ Args: L (float): the smoothness parameter. n (int): number of iterations. wrapper (str): the name of the wrapper to be used. solver (str): the name of the solver the wrapper should use. verbose (int): level of information details to print. - -1: No verbose at all. - 0: This example's output. - 1: This example's output + PEPit information. - 2: This example's output + PEPit information + solver details. Returns: pepit_tau (float): worst-case value theoretical_tau (float): theoretical value Example: >>> pepit_tau, theoretical_tau = wc_optimized_gradient(L=3, n=4, wrapper="cvxpy", solver=None, verbose=1) (PEPit) Setting up the problem: size of the Gram matrix: 7x7 (PEPit) Setting up the problem: performance measure is the minimum of 1 element(s) (PEPit) Setting up the problem: Adding initial conditions and general constraints ... (PEPit) Setting up the problem: initial conditions and general constraints (1 constraint(s) added) (PEPit) Setting up the problem: interpolation conditions for 1 function(s) Function 1 : Adding 30 scalar constraint(s) ... Function 1 : 30 scalar constraint(s) added (PEPit) Setting up the problem: additional constraints for 0 function(s) (PEPit) Compiling SDP (PEPit) Calling SDP solver (PEPit) Solver status: optimal (wrapper:cvxpy, solver: MOSEK); optimal value: 0.0767518265733206 (PEPit) Postprocessing: 6 eigenvalue(s) > 0 before dimension reduction (PEPit) Calling SDP solver (PEPit) Solver status: optimal (solver: MOSEK); objective value: 0.0766518263678761 (PEPit) Postprocessing: 1 eigenvalue(s) > 8.430457643734283e-09 after dimension reduction (PEPit) Primal feasibility check: The solver found a Gram matrix that is positive semi-definite up to an error of 5.872825531822352e-11 All the primal scalar constraints are verified up to an error of 1.9493301200643187e-10 (PEPit) Dual feasibility check: The solver found a residual matrix that is positive semi-definite All the dual scalar values associated with inequality constraints are nonnegative up to an error of 2.3578267940913163e-09 (PEPit) The worst-case guarantee proof is perfectly reconstituted up to an error of 3.653093053290753e-08 (PEPit) Final upper bound (dual): 0.0767518302587488 and lower bound (primal example): 0.0766518263678761 (PEPit) Duality gap: absolute: 0.00010000389087269634 and relative: 0.0013046511167619983 *** Example file: worst-case performance of optimized gradient method *** PEPit guarantee: f(y_n)-f_* == 0.0767518 ||x_0 - x_*||^2 Theoretical guarantee: f(y_n)-f_* <= 0.0767518 ||x_0 - x_*||^2 """ # Instantiate PEP problem = PEP() # Declare a smooth convex function func = problem.declare_function(SmoothConvexFunction, L=L) # Start by defining its unique optimal point xs = x_* and corresponding function value fs = f_* xs = func.stationary_point() fs = func(xs) # Then Define the starting point of the algorithm x0 = problem.set_initial_point() # Set the initial constraint that is the distance between x0 and x^* problem.set_initial_condition((x0 - xs) ** 2 <= 1) # Run n steps of the optimized gradient method (OGM) method theta_new = 1 x_new = x0 y = x0 for i in range(n): x_old = x_new x_new = y - 1 / L * func.gradient(y) theta_old = theta_new if i < n - 1: theta_new = (1 + sqrt(4 * theta_new ** 2 + 1)) / 2 else: theta_new = (1 + sqrt(8 * theta_new ** 2 + 1)) / 2 y = x_new + (theta_old - 1) / theta_new * (x_new - x_old) + theta_old / theta_new * (x_new - y) # Set the performance metric to the function value accuracy problem.set_performance_metric(func(y) - fs) # Solve the PEP pepit_verbose = max(verbose, 0) pepit_tau = problem.solve(wrapper=wrapper, solver=solver, verbose=pepit_verbose, dimension_reduction_heuristic="trace") # Compute theoretical guarantee (for comparison) theoretical_tau = L / 2 / theta_new ** 2 # Print conclusion if required if verbose != -1: print('*** Example file: worst-case performance of optimized gradient method ***') print('\tPEPit guarantee:\t f(y_n)-f_* == {:.6} ||x_0 - x_*||^2'.format(pepit_tau)) print('\tTheoretical guarantee:\t f(y_n)-f_* <= {:.6} ||x_0 - x_*||^2'.format(theoretical_tau)) # Return the worst-case guarantee of the evaluated method (and the reference theoretical value) return pepit_tau, theoretical_tau
if __name__ == "__main__": pepit_tau, theoretical_tau = wc_optimized_gradient(L=3, n=4, wrapper="cvxpy", solver=None, verbose=1)