Source code for PEPit.examples.tutorials.gradient_descent_contraction

from PEPit import PEP
from PEPit.functions import SmoothStronglyConvexFunction


[docs] def wc_gradient_descent_contraction(L, mu, gamma, n, wrapper="cvxpy", solver=None, verbose=1): """ Consider the convex minimization problem .. math:: f_\\star \\triangleq \\min_x f(x), where :math:`f` is :math:`L`-smooth and :math:`\\mu`-strongly convex. This code computes a worst-case guarantee for **gradient descent** with fixed step-size :math:`\\gamma`. That is, it computes the smallest possible :math:`\\tau(n, L, \\mu, \\gamma)` such that the guarantee .. math:: \\| x_n - y_n \\|^2 \\leqslant \\tau(n, L, \\mu, \\gamma) \\| x_0 - y_0 \\|^2 is valid, where :math:`x_n` and :math:`y_n` are the outputs of the gradient descent method with fixed step-size :math:`\\gamma`, starting respectively from :math:`x_0` and :math:`y_0`. In short, for given values of :math:`n`, :math:`L`, :math:`\\mu` and :math:`\\gamma`, :math:`\\tau(n, L, \\mu \\gamma)` is computed as the worst-case value of :math:`\\| x_n - y_n \\|^2` when :math:`\\| x_0 - y_0 \\|^2 \\leqslant 1`. **Algorithm**: For :math:`t\\in\\{0,1,\\ldots,n-1\\}`, gradient descent is described by .. math:: x_{t+1} = x_t - \\gamma \\nabla f(x_t), where :math:`\\gamma` is a step-size. **Theoretical guarantee**: The **tight** theoretical guarantee is .. math:: \\| x_n - y_n \\|^2 \\leqslant \\max\\{(1-L\\gamma)^2,(1-\\mu \\gamma)^2\\}^n\\| x_0 - y_0 \\|^2, which is tight on simple quadratic functions. Args: L (float): the smoothness parameter. mu (float): the strong-convexity parameter. gamma (float): step-size. n (int): number of iterations. wrapper (str): the name of the wrapper to be used. solver (str): the name of the solver the wrapper should use. verbose (int): level of information details to print. - -1: No verbose at all. - 0: This example's output. - 1: This example's output + PEPit information. - 2: This example's output + PEPit information + solver details. Returns: pepit_tau (float): worst-case value theoretical_tau (float): theoretical value Example: >>> L = 1 >>> pepit_tau, theoretical_tau = wc_gradient_descent_contraction(L=L, mu=0.1, gamma=1 / L, n=1, wrapper="cvxpy", solver=None, verbose=1) (PEPit) Setting up the problem: size of the Gram matrix: 4x4 (PEPit) Setting up the problem: performance measure is the minimum of 1 element(s) (PEPit) Setting up the problem: Adding initial conditions and general constraints ... (PEPit) Setting up the problem: initial conditions and general constraints (1 constraint(s) added) (PEPit) Setting up the problem: interpolation conditions for 1 function(s) Function 1 : Adding 2 scalar constraint(s) ... Function 1 : 2 scalar constraint(s) added (PEPit) Setting up the problem: additional constraints for 0 function(s) (PEPit) Compiling SDP (PEPit) Calling SDP solver (PEPit) Solver status: optimal (wrapper:cvxpy, solver: MOSEK); optimal value: 0.8100000029203449 (PEPit) Primal feasibility check: The solver found a Gram matrix that is positive semi-definite up to an error of 1.896548260018477e-09 All the primal scalar constraints are verified up to an error of 3.042855638898251e-09 (PEPit) Dual feasibility check: The solver found a residual matrix that is positive semi-definite All the dual scalar values associated with inequality constraints are nonnegative (PEPit) The worst-case guarantee proof is perfectly reconstituted up to an error of 4.0078754315331366e-08 (PEPit) Final upper bound (dual): 0.8100000036427537 and lower bound (primal example): 0.8100000029203449 (PEPit) Duality gap: absolute: 7.224087994472939e-10 and relative: 8.918627121515396e-10 *** Example file: worst-case performance of gradient descent with fixed step-sizes in contraction *** PEPit guarantee: ||x_n - y_n||^2 <= 0.81 ||x_0 - y_0||^2 Theoretical guarantee: ||x_n - y_n||^2 <= 0.81 ||x_0 - y_0||^2 """ # Instantiate PEP problem = PEP() # Declare a strongly convex smooth function func = problem.declare_function(SmoothStronglyConvexFunction, mu=mu, L=L) # Then define the starting points x0 and y0 of the algorithm x_0 = problem.set_initial_point() y_0 = problem.set_initial_point() # Set the initial constraint that is the distance between x0 and y0 problem.set_initial_condition((x_0 - y_0) ** 2 <= 1) # Run n steps of the GD method x = x_0 y = y_0 for _ in range(n): x = x - gamma * func.gradient(x) y = y - gamma * func.gradient(y) # Set the performance metric to the function values accuracy problem.set_performance_metric((x - y) ** 2) # Solve the PEP pepit_verbose = max(verbose, 0) pepit_tau = problem.solve(wrapper=wrapper, solver=solver, verbose=pepit_verbose) # Compute theoretical guarantee (for comparison) theoretical_tau = max((1 - gamma * L) ** 2, (1 - gamma * mu) ** 2) ** n # Print conclusion if required if verbose != -1: print('*** Example file: worst-case performance of gradient descent with fixed step-sizes in contraction ***') print('\tPEPit guarantee:\t ||x_n - y_n||^2 <= {:.6} ||x_0 - y_0||^2'.format(pepit_tau)) print('\tTheoretical guarantee:\t ||x_n - y_n||^2 <= {:.6} ||x_0 - y_0||^2'.format(theoretical_tau)) # Return the worst-case guarantee of the evaluated method (and the reference theoretical value) return pepit_tau, theoretical_tau
if __name__ == "__main__": L = 1 pepit_tau, theoretical_tau = wc_gradient_descent_contraction(L=L, mu=0.1, gamma=1 / L, n=1, wrapper="cvxpy", solver=None, verbose=1)