Source code for PEPit.examples.unconstrained_convex_minimization.accelerated_gradient_convex

from PEPit import PEP
from PEPit.functions import SmoothStronglyConvexFunction


[docs] def wc_accelerated_gradient_convex(mu, L, n, wrapper="cvxpy", solver=None, verbose=1): """ Consider the convex minimization problem .. math:: f_\\star \\triangleq \\min_x f(x), where :math:`f` is :math:`L`-smooth and :math:`\\mu`-strongly convex (:math:`\\mu` is possibly 0). This code computes a worst-case guarantee for an **accelerated gradient method**, a.k.a. **fast gradient method**. That is, it computes the smallest possible :math:`\\tau(n, L, \\mu)` such that the guarantee .. math:: f(x_n) - f_\\star \\leqslant \\tau(n, L, \\mu) \\|x_0 - x_\\star\\|^2 is valid, where :math:`x_n` is the output of the accelerated gradient method, and where :math:`x_\\star` is the minimizer of :math:`f`. In short, for given values of :math:`n`, :math:`L` and :math:`\\mu`, :math:`\\tau(n, L, \\mu)` is computed as the worst-case value of :math:`f(x_n)-f_\\star` when :math:`\\|x_0 - x_\\star\\|^2 \\leqslant 1`. **Algorithm**: The accelerated gradient method of this example is provided by .. math:: :nowrap: \\begin{eqnarray} x_{t+1} & = & y_t - \\frac{1}{L} \\nabla f(y_t) \\\\ y_{t+1} & = & x_{t+1} + \\frac{t-1}{t+2} (x_{t+1} - x_t). \\end{eqnarray} **Theoretical guarantee**: When :math:`\\mu=0`, a tight **empirical** guarantee can be found in [1, Table 1]: .. math:: f(x_n)-f_\\star \\leqslant \\frac{2L\\|x_0-x_\\star\\|^2}{n^2 + 5 n + 6}, where tightness is obtained on some Huber loss functions. **References**: `[1] A. Taylor, J. Hendrickx, F. Glineur (2017). Exact worst-case performance of first-order methods for composite convex optimization. SIAM Journal on Optimization, 27(3):1283–1313. <https://arxiv.org/pdf/1512.07516.pdf>`_ Args: mu (float): the strong convexity parameter L (float): the smoothness parameter. n (int): number of iterations. wrapper (str): the name of the wrapper to be used. solver (str): the name of the solver the wrapper should use. verbose (int): level of information details to print. - -1: No verbose at all. - 0: This example's output. - 1: This example's output + PEPit information. - 2: This example's output + PEPit information + solver details. Returns: pepit_tau (float): worst-case value theoretical_tau (float): theoretical value Example: >>> pepit_tau, theoretical_tau = wc_accelerated_gradient_convex(mu=0, L=1, n=1, wrapper="cvxpy", solver=None, verbose=1) (PEPit) Setting up the problem: size of the Gram matrix: 4x4 (PEPit) Setting up the problem: performance measure is the minimum of 1 element(s) (PEPit) Setting up the problem: Adding initial conditions and general constraints ... (PEPit) Setting up the problem: initial conditions and general constraints (1 constraint(s) added) (PEPit) Setting up the problem: interpolation conditions for 1 function(s) Function 1 : Adding 6 scalar constraint(s) ... Function 1 : 6 scalar constraint(s) added (PEPit) Setting up the problem: additional constraints for 0 function(s) (PEPit) Compiling SDP (PEPit) Calling SDP solver (PEPit) Solver status: optimal (wrapper:cvxpy, solver: MOSEK); optimal value: 0.16666666115099577 (PEPit) Primal feasibility check: The solver found a Gram matrix that is positive semi-definite up to an error of 4.820889929895971e-09 All the primal scalar constraints are verified up to an error of 3.620050065267222e-09 (PEPit) Dual feasibility check: The solver found a residual matrix that is positive semi-definite All the dual scalar values associated with inequality constraints are nonnegative (PEPit) The worst-case guarantee proof is perfectly reconstituted up to an error of 3.1009588480346295e-08 (PEPit) Final upper bound (dual): 0.16666666498584737 and lower bound (primal example): 0.16666666115099577 (PEPit) Duality gap: absolute: 3.834851602935174e-09 and relative: 2.300911037907513e-08 *** Example file: worst-case performance of accelerated gradient method *** PEPit guarantee: f(x_n)-f_* <= 0.166667 ||x_0 - x_*||^2 Theoretical guarantee: f(x_n)-f_* <= 0.166667 ||x_0 - x_*||^2 """ # Instantiate PEP problem = PEP() # Declare a strongly convex smooth function func = problem.declare_function(SmoothStronglyConvexFunction, mu=mu, L=L) # Start by defining its unique optimal point xs = x_* and corresponding function value fs = f_* xs = func.stationary_point() fs = func(xs) # Then define the starting point x0 of the algorithm x0 = problem.set_initial_point() # Set the initial constraint that is the distance between x0 and x^* problem.set_initial_condition((x0 - xs) ** 2 <= 1) # Run n steps of the fast gradient method x_new = x0 y = x0 for i in range(n): x_old = x_new x_new = y - 1 / L * func.gradient(y) y = x_new + i / (i + 3) * (x_new - x_old) # Set the performance metric to the function value accuracy problem.set_performance_metric(func(x_new) - fs) # Solve the PEP pepit_verbose = max(verbose, 0) pepit_tau = problem.solve(wrapper=wrapper, solver=solver, verbose=pepit_verbose) # Theoretical guarantee (for comparison) theoretical_tau = 2 * L / (n ** 2 + 5 * n + 6) # tight only for mu=0, see [2], Table 1 (column 1, line 1) if mu != 0: print('Warning: momentum is tuned for non-strongly convex functions.') # Print conclusion if required if verbose != -1: print('*** Example file: worst-case performance of accelerated gradient method ***') print('\tPEPit guarantee:\t f(x_n)-f_* <= {:.6} ||x_0 - x_*||^2'.format(pepit_tau)) print('\tTheoretical guarantee:\t f(x_n)-f_* <= {:.6} ||x_0 - x_*||^2'.format(theoretical_tau)) # Return the worst-case guarantee of the evaluated method (and the reference theoretical value) return pepit_tau, theoretical_tau
if __name__ == "__main__": pepit_tau, theoretical_tau = wc_accelerated_gradient_convex(mu=0, L=1, n=1, wrapper="cvxpy", solver=None, verbose=1)