Source code for PEPit.examples.unconstrained_convex_minimization.gradient_descent

from PEPit import PEP
from PEPit.functions import SmoothConvexFunction


[docs] def wc_gradient_descent(L, gamma, n, wrapper="cvxpy", solver=None, verbose=1): """ Consider the convex minimization problem .. math:: f_\\star \\triangleq \\min_x f(x), where :math:`f` is :math:`L`-smooth and convex. This code computes a worst-case guarantee for **gradient descent** with fixed step-size :math:`\\gamma`. That is, it computes the smallest possible :math:`\\tau(n, L, \\gamma)` such that the guarantee .. math:: f(x_n) - f_\\star \\leqslant \\tau(n, L, \\gamma) \\|x_0 - x_\\star\\|^2 is valid, where :math:`x_n` is the output of gradient descent with fixed step-size :math:`\\gamma`, and where :math:`x_\\star` is a minimizer of :math:`f`. In short, for given values of :math:`n`, :math:`L`, and :math:`\\gamma`, :math:`\\tau(n, L, \\gamma)` is computed as the worst-case value of :math:`f(x_n)-f_\\star` when :math:`\\|x_0 - x_\\star\\|^2 \\leqslant 1`. **Algorithm**: Gradient descent is described by .. math:: x_{t+1} = x_t - \\gamma \\nabla f(x_t), where :math:`\\gamma` is a step-size. **Theoretical guarantee**: When :math:`\\gamma \\leqslant \\frac{1}{L}`, the **tight** theoretical guarantee can be found in [1, Theorem 3.1]: .. math:: f(x_n)-f_\\star \\leqslant \\frac{L}{4nL\\gamma+2} \\|x_0-x_\\star\\|^2, which is tight on some Huber loss functions. **References**: `[1] Y. Drori, M. Teboulle (2014). Performance of first-order methods for smooth convex minimization: a novel approach. Mathematical Programming 145(1–2), 451–482. <https://arxiv.org/pdf/1206.3209.pdf>`_ Args: L (float): the smoothness parameter. gamma (float): step-size. n (int): number of iterations. wrapper (str): the name of the wrapper to be used. solver (str): the name of the solver the wrapper should use. verbose (int): level of information details to print. - -1: No verbose at all. - 0: This example's output. - 1: This example's output + PEPit information. - 2: This example's output + PEPit information + solver details. Returns: pepit_tau (float): worst-case value theoretical_tau (float): theoretical value Example: >>> L = 3 >>> pepit_tau, theoretical_tau = wc_gradient_descent(L=L, gamma=1 / L, n=4, wrapper="cvxpy", solver=None, verbose=1) (PEPit) Setting up the problem: size of the Gram matrix: 7x7 (PEPit) Setting up the problem: performance measure is the minimum of 1 element(s) (PEPit) Setting up the problem: Adding initial conditions and general constraints ... (PEPit) Setting up the problem: initial conditions and general constraints (1 constraint(s) added) (PEPit) Setting up the problem: interpolation conditions for 1 function(s) Function 1 : Adding 30 scalar constraint(s) ... Function 1 : 30 scalar constraint(s) added (PEPit) Setting up the problem: additional constraints for 0 function(s) (PEPit) Compiling SDP (PEPit) Calling SDP solver (PEPit) Solver status: optimal (wrapper:cvxpy, solver: MOSEK); optimal value: 0.1666666649793712 (PEPit) Primal feasibility check: The solver found a Gram matrix that is positive semi-definite up to an error of 6.325029587061441e-10 All the primal scalar constraints are verified up to an error of 6.633613956752438e-09 (PEPit) Dual feasibility check: The solver found a residual matrix that is positive semi-definite All the dual scalar values associated with inequality constraints are nonnegative up to an error of 7.0696173743789816e-09 (PEPit) The worst-case guarantee proof is perfectly reconstituted up to an error of 7.547098305159261e-08 (PEPit) Final upper bound (dual): 0.16666667331941884 and lower bound (primal example): 0.1666666649793712 (PEPit) Duality gap: absolute: 8.340047652488636e-09 and relative: 5.004028642152831e-08 *** Example file: worst-case performance of gradient descent with fixed step-sizes *** PEPit guarantee: f(x_n)-f_* <= 0.166667 ||x_0 - x_*||^2 Theoretical guarantee: f(x_n)-f_* <= 0.166667 ||x_0 - x_*||^2 """ # Instantiate PEP problem = PEP() # Declare a smooth convex function func = problem.declare_function(SmoothConvexFunction, L=L) # Start by defining its unique optimal point xs = x_* and corresponding function value fs = f_* xs = func.stationary_point() fs = func(xs) # Then define the starting point x0 of the algorithm x0 = problem.set_initial_point() # Set the initial constraint that is the distance between x0 and x^* problem.set_initial_condition((x0 - xs) ** 2 <= 1) # Run n steps of the GD method x = x0 for _ in range(n): x = x - gamma * func.gradient(x) # Set the performance metric to the function values accuracy problem.set_performance_metric(func(x) - fs) # Solve the PEP pepit_verbose = max(verbose, 0) pepit_tau = problem.solve(wrapper=wrapper, solver=solver, verbose=pepit_verbose) # Compute theoretical guarantee (for comparison) theoretical_tau = L / (2 * (2 * n * L * gamma + 1)) # Print conclusion if required if verbose != -1: print('*** Example file: worst-case performance of gradient descent with fixed step-sizes ***') print('\tPEPit guarantee:\t f(x_n)-f_* <= {:.6} ||x_0 - x_*||^2'.format(pepit_tau)) print('\tTheoretical guarantee:\t f(x_n)-f_* <= {:.6} ||x_0 - x_*||^2'.format(theoretical_tau)) # Return the worst-case guarantee of the evaluated method (and the reference theoretical value) return pepit_tau, theoretical_tau
if __name__ == "__main__": L = 3 pepit_tau, theoretical_tau = wc_gradient_descent(L=L, gamma=1 / L, n=4, wrapper="cvxpy", solver=None, verbose=1)