Source code for PEPit.examples.unconstrained_convex_minimization.gradient_descent_qg_convex_decreasing

from math import sqrt

from PEPit import PEP
from PEPit.functions import ConvexQGFunction


[docs] def wc_gradient_descent_qg_convex_decreasing(L, n, wrapper="cvxpy", solver=None, verbose=1): """ Consider the convex minimization problem .. math:: f_\\star \\triangleq \\min_x f(x), where :math:`f` is quadratically upper bounded (:math:`\\text{QG}^+` [1]), i.e. :math:`\\forall x, f(x) - f_\\star \\leqslant \\frac{L}{2} \\|x-x_\\star\\|^2`, and convex. This code computes a worst-case guarantee for **gradient descent** with decreasing step-sizes. That is, it computes the smallest possible :math:`\\tau(n, L)` such that the guarantee .. math:: f(x_n) - f_\\star \\leqslant \\tau(n, L) \\| x_0 - x_\\star\\|^2 is valid, where :math:`x_n` is the output of gradient descent with decreasing step-sizes, and where :math:`x_\\star` is a minimizer of :math:`f`. In short, for given values of :math:`n` and :math:`L`, :math:`\\tau(n, L)` is computed as the worst-case value of :math:`f(x_n)-f_\\star` when :math:`||x_0 - x_\\star||^2 \\leqslant 1`. **Algorithm**: Gradient descent with decreasing step sizes is described by .. math:: x_{t+1} = x_t - \\gamma_t \\nabla f(x_t) with .. math:: \\gamma_t = \\frac{1}{L u_{t+1}} where the sequence :math:`u` is defined by .. math:: :nowrap: \\begin{eqnarray} u_0 & = & 1 \\\\ u_{t} & = & \\frac{u_{t-1}}{2} + \\sqrt{\\left(\\frac{u_{t-1}}{2}\\right)^2 + 2}, \\quad \\mathrm{for } t \\geq 1 \\end{eqnarray} **Theoretical guarantee**: The **tight** theoretical guarantee is conjectured in [1, Conjecture A.3]: .. math:: f(x_n)-f_\\star \\leqslant \\frac{L}{2 u_t} \\|x_0-x_\\star\\|^2. Notes: We verify that :math:`u_t \\sim 2\\sqrt{t}`. The step sizes as well as the function values of the iterates decrease as :math:`O\\left( \\frac{1}{\\sqrt{t}} \\right)`. **References**: The detailed approach is available in [1, Appendix A.3]. `[1] B. Goujaud, A. Taylor, A. Dieuleveut (2022). Optimal first-order methods for convex functions with a quadratic upper bound. <https://arxiv.org/pdf/2205.15033.pdf>`_ Args: L (float): the quadratic growth parameter. n (int): number of iterations. wrapper (str): the name of the wrapper to be used. solver (str): the name of the solver the wrapper should use. verbose (int): level of information details to print. - -1: No verbose at all. - 0: This example's output. - 1: This example's output + PEPit information. - 2: This example's output + PEPit information + solver details. Returns: pepit_tau (float): worst-case value theoretical_tau (float): theoretical value Example: >>> pepit_tau, theoretical_tau = wc_gradient_descent_qg_convex_decreasing(L=1, n=6, wrapper="cvxpy", solver=None, verbose=1) (PEPit) Setting up the problem: size of the Gram matrix: 9x9 (PEPit) Setting up the problem: performance measure is the minimum of 1 element(s) (PEPit) Setting up the problem: Adding initial conditions and general constraints ... (PEPit) Setting up the problem: initial conditions and general constraints (1 constraint(s) added) (PEPit) Setting up the problem: interpolation conditions for 1 function(s) Function 1 : Adding 63 scalar constraint(s) ... Function 1 : 63 scalar constraint(s) added (PEPit) Setting up the problem: additional constraints for 0 function(s) (PEPit) Compiling SDP (PEPit) Calling SDP solver (PEPit) Solver status: optimal (wrapper:cvxpy, solver: MOSEK); optimal value: 0.10554738683923168 (PEPit) Primal feasibility check: The solver found a Gram matrix that is positive semi-definite up to an error of 1.3052503007966848e-10 All the primal scalar constraints are verified up to an error of 6.537865110400887e-10 (PEPit) Dual feasibility check: The solver found a residual matrix that is positive semi-definite All the dual scalar values associated with inequality constraints are nonnegative up to an error of 4.781039101724198e-10 (PEPit) The worst-case guarantee proof is perfectly reconstituted up to an error of 8.076454220612452e-09 (PEPit) Final upper bound (dual): 0.10554738755645543 and lower bound (primal example): 0.10554738683923168 (PEPit) Duality gap: absolute: 7.172237526109626e-10 and relative: 6.7952772123428116e-09 *** Example file: worst-case performance of gradient descent with fixed step-sizes *** PEPit guarantee: f(x_n)-f_* <= 0.105547 ||x_0 - x_*||^2 Theoretical conjecture: f(x_n)-f_* <= 0.105547 ||x_0 - x_*||^2 """ # Instantiate PEP problem = PEP() # Declare a strongly convex smooth function func = problem.declare_function(ConvexQGFunction, L=L) # Start by defining its unique optimal point xs = x_* and corresponding function value fs = f_* xs = func.stationary_point() fs = func.value(xs) # Then define the starting point x0 of the algorithm x = problem.set_initial_point() g, f = func.oracle(x) # Set the initial constraint that is the distance between x0 and x^* problem.set_initial_condition((x - xs) ** 2 <= 1) # GD loop u = 1 for i in range(n): # Run 1 step of the GD method and update u accordingly. u = u / 2 + sqrt((u / 2) ** 2 + 2) gamma = 1 / (L * u) x = x - gamma * g g, f = func.oracle(x) # Compute theoretical guarantee (for comparison) theoretical_tau = L / (2 * u) # Set the performance metric to the function values accuracy problem.set_performance_metric((f - fs)) # Solve the PEP pepit_verbose = max(verbose, 0) pepit_tau = problem.solve(wrapper=wrapper, solver=solver, verbose=pepit_verbose) # Print conclusion if required if verbose != -1: print('*** Example file: worst-case performance of gradient descent with fixed step-sizes ***') print('\tPEPit guarantee:\t f(x_n)-f_* <= {:.6} ||x_0 - x_*||^2'.format(pepit_tau)) print('\tTheoretical conjecture:\t f(x_n)-f_* <= {:.6} ||x_0 - x_*||^2'.format(theoretical_tau)) # Return the worst-case guarantee of the evaluated method (and the reference theoretical value) return pepit_tau, theoretical_tau
if __name__ == "__main__": pepit_tau, theoretical_tau = wc_gradient_descent_qg_convex_decreasing(L=1, n=6, wrapper="cvxpy", solver=None, verbose=1)