Source code for PEPit.examples.unconstrained_convex_minimization.information_theoretic_exact_method

from math import sqrt

from PEPit import PEP
from PEPit.functions import SmoothStronglyConvexFunction


[docs] def wc_information_theoretic(mu, L, n, wrapper="cvxpy", solver=None, verbose=1): """ Consider the convex minimization problem .. math:: f_\\star \\triangleq \\min_x f(x), where :math:`f` is :math:`L`-smooth and :math:`\\mu`-strongly convex (:math:`\\mu` is possibly 0). This code computes a worst-case guarantee for the **information theoretic exact method** (ITEM). That is, it computes the smallest possible :math:`\\tau(n, L, \\mu)` such that the guarantee .. math:: \\|z_n - x_\\star\\|^2 \\leqslant \\tau(n, L, \\mu) \\|z_0 - x_\\star\\|^2 is valid, where :math:`z_n` is the output of the ITEM, and where :math:`x_\\star` is the minimizer of :math:`f`. In short, for given values of :math:`n`, :math:`L` and :math:`\\mu`, :math:`\\tau(n, L, \\mu)` is computed as the worst-case value of :math:`\\|z_n - x_\\star\\|^2` when :math:`\\|z_0 - x_\\star\\|^2 \\leqslant 1`. **Algorithm**: For :math:`t\\in\\{0,1,\\ldots,n-1\\}`, the information theoretic exact method of this example is provided by .. math:: :nowrap: \\begin{eqnarray} y_{t} & = & (1-\\beta_t) z_t + \\beta_t x_t \\\\ x_{t+1} & = & y_t - \\frac{1}{L} \\nabla f(y_t) \\\\ z_{t+1} & = & \\left(1-q\\delta_t\\right) z_t+q\\delta_t y_t-\\frac{\\delta_t}{L}\\nabla f(y_t), \\end{eqnarray} with :math:`y_{-1}=x_0=z_0`, :math:`q=\\frac{\\mu}{L}` (inverse condition ratio), and the scalar sequences: .. math:: :nowrap: \\begin{eqnarray} A_{t+1} & = & \\frac{(1+q)A_t+2\\left(1+\\sqrt{(1+A_t)(1+qA_t)}\\right)}{(1-q)^2},\\\\ \\beta_{t+1} & = & \\frac{A_t}{(1-q)A_{t+1}},\\\\ \\delta_{t+1} & = & \\frac{1}{2}\\frac{(1-q)^2A_{t+1}-(1+q)A_t}{1+q+q A_t}, \\end{eqnarray} with :math:`A_0=0`. **Theoretical guarantee**: A tight worst-case guarantee can be found in [1, Theorem 3]: .. math:: \\|z_n - x_\\star\\|^2 \\leqslant \\frac{1}{1+q A_n} \\|z_0-x_\\star\\|^2, where tightness is obtained on some quadratic loss functions (see [1, Lemma 2]). **References**: `[1] A. Taylor, Y. Drori (2022). An optimal gradient method for smooth strongly convex minimization. Mathematical Programming. <https://arxiv.org/pdf/2101.09741.pdf>`_ Args: mu (float): the strong convexity parameter. L (float): the smoothness parameter. n (int): number of iterations. wrapper (str): the name of the wrapper to be used. solver (str): the name of the solver the wrapper should use. verbose (int): level of information details to print. - -1: No verbose at all. - 0: This example's output. - 1: This example's output + PEPit information. - 2: This example's output + PEPit information + solver details. Returns: pepit_tau (float): worst-case value theoretical_tau (float): theoretical value Example: >>> pepit_tau, theoretical_tau = wc_information_theoretic(mu=.001, L=1, n=15, wrapper="cvxpy", solver=None, verbose=1) (PEPit) Setting up the problem: size of the Gram matrix: 17x17 (PEPit) Setting up the problem: performance measure is the minimum of 1 element(s) (PEPit) Setting up the problem: Adding initial conditions and general constraints ... (PEPit) Setting up the problem: initial conditions and general constraints (1 constraint(s) added) (PEPit) Setting up the problem: interpolation conditions for 1 function(s) Function 1 : Adding 240 scalar constraint(s) ... Function 1 : 240 scalar constraint(s) added (PEPit) Setting up the problem: additional constraints for 0 function(s) (PEPit) Compiling SDP (PEPit) Calling SDP solver (PEPit) Solver status: optimal (wrapper:cvxpy, solver: MOSEK); optimal value: 0.7566088333863785 (PEPit) Primal feasibility check: The solver found a Gram matrix that is positive semi-definite All the primal scalar constraints are verified up to an error of 2.6490565304427935e-09 (PEPit) Dual feasibility check: The solver found a residual matrix that is positive semi-definite All the dual scalar values associated with inequality constraints are nonnegative (PEPit) The worst-case guarantee proof is perfectly reconstituted up to an error of 5.0900580550698854e-05 (PEPit) Final upper bound (dual): 0.7566088219545419 and lower bound (primal example): 0.7566088333863785 (PEPit) Duality gap: absolute: -1.1431836588471356e-08 and relative: -1.5109308911059783e-08 *** Example file: worst-case performance of the information theoretic exact method *** PEP-it guarantee: ||z_n - x_* ||^2 <= 0.756609 ||z_0 - x_*||^2 Theoretical guarantee: ||z_n - x_* ||^2 <= 0.756605 ||z_0 - x_*||^2 """ # Instantiate PEP problem = PEP() # Declare a strongly convex smooth function func = problem.declare_function(SmoothStronglyConvexFunction, mu=mu, L=L) # Start by defining its unique optimal point xs = x_* xs = func.stationary_point() # Then define the starting point z0 of the algorithm z0 = problem.set_initial_point() # Set the initial constraint that is the distance between z0 and x^* problem.set_initial_condition((z0 - xs) ** 2 <= 1) # Run n steps of the information theoretic exact method A_new = 0 q = mu / L x = z0 z = z0 for i in range(n): A_old = A_new A_new = ((1 + q) * A_old + 2 * (1 + sqrt((1 + A_old) * (1 + q * A_old)))) / (1 - q) ** 2 beta = A_old / (1 - q) / A_new delta = 1 / 2 * ((1 - q) ** 2 * A_new - (1 + q) * A_old) / (1 + q + q * A_old) y = (1 - beta) * z + beta * x x = y - 1 / L * func.gradient(y) z = (1 - q * delta) * z + q * delta * y - delta / L * func.gradient(y) # Set the performance metric to the distance accuracy problem.set_performance_metric((z - xs) ** 2) # Solve the PEP pepit_verbose = max(verbose, 0) pepit_tau = problem.solve(wrapper=wrapper, solver=solver, verbose=pepit_verbose) # Theoretical guarantee (for comparison) theoretical_tau = 1 / (1 + q * A_new) # Print conclusion if required if verbose != -1: print('*** Example file: worst-case performance of the information theoretic exact method ***') print('\tPEP-it guarantee:\t ||z_n - x_* ||^2 <= {:.6} ||z_0 - x_*||^2'.format(pepit_tau)) print('\tTheoretical guarantee:\t ||z_n - x_* ||^2 <= {:.6} ||z_0 - x_*||^2'.format(theoretical_tau)) # Return the worst-case guarantee of the evaluated method (and the reference theoretical value) return pepit_tau, theoretical_tau
if __name__ == "__main__": pepit_tau, theoretical_tau = wc_information_theoretic(mu=.001, L=1, n=15, wrapper="cvxpy", solver=None, verbose=1)