Source code for PEPit.examples.unconstrained_convex_minimization.subgradient_method_rsi_eb

from PEPit import PEP
from PEPit.functions import RsiEbFunction


[docs] def wc_subgradient_method_rsi_eb(mu, L, gamma, n, wrapper="cvxpy", solver=None, verbose=1): """ Consider the convex minimization problem .. math:: f_\\star \\triangleq \\min_x f(x), where :math:`f` verifies the "lower" restricted secant inequality (:math:`\\mu-\\text{RSI}^-`) and the "upper" error bound (:math:`L-\\text{EB}^+`) [1]. This code computes a worst-case guarantee for **gradient descent** with fixed step-size :math:`\\gamma`. That is, it computes the smallest possible :math:`\\tau(n, \\mu, L, \\gamma)` such that the guarantee .. math:: \\| x_n - x_\\star \\|^2 \\leqslant \\tau(n, \\mu, L, \\gamma) \\| x_0 - x_\\star \\|^2 is valid, where :math:`x_n` is the output of gradient descent with fixed step-size :math:`\\gamma`, and where :math:`x_\\star` is a minimizer of :math:`f`. In short, for given values of :math:`n`, :math:`L`, and :math:`\\gamma`, :math:`\\tau(n, \\mu, L, \\gamma)` is computed as the worst-case value of :math:`\\| x_n - x_\\star \\|^2` when :math:`\\|x_0 - x_\\star\\|^2 \\leqslant 1`. **Algorithm**: Sub-gradient descent is described by .. math:: x_{t+1} = x_t - \\gamma \\nabla f(x_t), where :math:`\\gamma` is a step-size. **Theoretical guarantee**: The **tight** theoretical guarantee can be found in [1, Prop 1] (upper bound) and [1, Theorem 2] (lower bound): .. math:: \\| x_n - x_\\star \\|^2 \\leqslant (1 - 2\\gamma\\mu + L^2 \\gamma^2)^n \\|x_0-x_\\star\\|^2. **References**: Definition and convergence guarantees can be found in [1]. `[1] C. Guille-Escuret, B. Goujaud, A. Ibrahim, I. Mitliagkas (2022). Gradient Descent Is Optimal Under Lower Restricted Secant Inequality And Upper Error Bound. <https://arxiv.org/pdf/2203.00342.pdf>`_ Args: mu (float): the rsi parameter L (float): the eb parameter. gamma (float): step-size. n (int): number of iterations. wrapper (str): the name of the wrapper to be used. solver (str): the name of the solver the wrapper should use. verbose (int): level of information details to print. - -1: No verbose at all. - 0: This example's output. - 1: This example's output + PEPit information. - 2: This example's output + PEPit information + solver details. Returns: pepit_tau (float): worst-case value theoretical_tau (float): theoretical value Example: >>> mu = .1 >>> L = 1 >>> pepit_tau, theoretical_tau = wc_subgradient_method_rsi_eb(mu=mu, L=L, gamma=mu / L ** 2, n=4, wrapper="cvxpy", solver=None, verbose=1) (PEPit) Setting up the problem: size of the Gram matrix: 6x6 (PEPit) Setting up the problem: performance measure is the minimum of 1 element(s) (PEPit) Setting up the problem: Adding initial conditions and general constraints ... (PEPit) Setting up the problem: initial conditions and general constraints (1 constraint(s) added) (PEPit) Setting up the problem: interpolation conditions for 1 function(s) Function 1 : Adding 8 scalar constraint(s) ... Function 1 : 8 scalar constraint(s) added (PEPit) Setting up the problem: additional constraints for 0 function(s) (PEPit) Compiling SDP (PEPit) Calling SDP solver (PEPit) Solver status: optimal (wrapper:cvxpy, solver: MOSEK); optimal value: 0.9605960099986828 (PEPit) Primal feasibility check: The solver found a Gram matrix that is positive semi-definite All the primal scalar constraints are verified (PEPit) Dual feasibility check: The solver found a residual matrix that is positive semi-definite All the dual scalar values associated with inequality constraints are nonnegative (PEPit) The worst-case guarantee proof is perfectly reconstituted up to an error of 2.9007807847382036e-12 (PEPit) Final upper bound (dual): 0.960596009998838 and lower bound (primal example): 0.9605960099986828 (PEPit) Duality gap: absolute: 1.5520917884259688e-13 and relative: 1.6157591456455218e-13 *** Example file: worst-case performance of gradient descent with fixed step-sizes *** PEPit guarantee: f(x_n)-f_* <= 0.960596 ||x_0 - x_*||^2 Theoretical guarantee: f(x_n)-f_* <= 0.960596 ||x_0 - x_*||^2 """ # Instantiate PEP problem = PEP() # Declare a strongly convex smooth function func = problem.declare_function(RsiEbFunction, mu=mu, L=L) # Start by defining its unique optimal point xs = x_* and corresponding function value fs = f_* xs = func.stationary_point() # Then define the starting point x0 of the algorithm x0 = problem.set_initial_point() # Set the initial constraint that is the distance between x0 and x^* problem.set_initial_condition((x0 - xs) ** 2 <= 1) # Run n steps of the GD method x = x0 for _ in range(n): x = x - gamma * func.gradient(x) # Set the performance metric to the function values accuracy problem.set_performance_metric((x - xs) ** 2) # Solve the PEP pepit_verbose = max(verbose, 0) pepit_tau = problem.solve(wrapper=wrapper, solver=solver, verbose=pepit_verbose) # Compute theoretical guarantee (for comparison) theoretical_tau = (1 - 2 * gamma * mu + gamma ** 2 * L ** 2) ** n # Print conclusion if required if verbose != -1: print('*** Example file: worst-case performance of gradient descent with fixed step-sizes ***') print('\tPEPit guarantee:\t f(x_n)-f_* <= {:.6} ||x_0 - x_*||^2'.format(pepit_tau)) print('\tTheoretical guarantee:\t f(x_n)-f_* <= {:.6} ||x_0 - x_*||^2'.format(theoretical_tau)) # Return the worst-case guarantee of the evaluated method (and the reference theoretical value) return pepit_tau, theoretical_tau
if __name__ == "__main__": mu = .1 L = 1 pepit_tau, theoretical_tau = wc_subgradient_method_rsi_eb(mu=mu, L=L, gamma=mu / L ** 2, n=4, wrapper="cvxpy", solver=None, verbose=1)