Source code for PEPit.examples.unconstrained_convex_minimization.triple_momentum

from math import sqrt

from PEPit import PEP
from PEPit.functions import SmoothStronglyConvexFunction


[docs] def wc_triple_momentum(mu, L, n, wrapper="cvxpy", solver=None, verbose=1): """ Consider the minimization problem .. math:: f_\\star \\triangleq \\min_x f(x), where :math:`f` is :math:`L`-smooth and :math:`\\mu`-strongly convex. This code computes a worst-case guarantee for **triple momentum method** (TMM). That is, it computes the smallest possible :math:`\\tau(n, L, \\mu)` such that the guarantee .. math:: f(x_n) - f_\\star \\leqslant \\tau(n, L, \\mu) \\|x_0 - x_\\star\\|^2 is valid, where :math:`x_n` is the output of the TMM, and where :math:`x_\\star` is the minimizer of :math:`f`. In short, for given values of :math:`n`, :math:`L` and :math:`\\mu`, :math:`\\tau(n, L, \\mu)` is computed as the worst-case value of :math:`f(x_n)-f_\\star` when :math:`\\|x_0 - x_\\star\\|^2 \\leqslant 1`. **Algorithm**: For :math:`t \in \\{ 1, \dots, n\\}` .. math:: :nowrap: \\begin{eqnarray} \\xi_{t+1} &&= (1 + \\beta) \\xi_{t} - \\beta \\xi_{t-1} - \\alpha \\nabla f(y_t) \\\\ y_{t} &&= (1+\\gamma ) \\xi_{t} -\\gamma \\xi_{t-1} \\\\ x_{t} && = (1 + \\delta) \\xi_{t} - \\delta \\xi_{t-1} \\end{eqnarray} with .. math:: :nowrap: \\begin{eqnarray} \\kappa &&= \\frac{L}{\\mu} , \\quad \\rho = 1- \\frac{1}{\\sqrt{\\kappa}}\\\\ (\\alpha, \\beta, \\gamma,\\delta) && = \\left(\\frac{1+\\rho}{L}, \\frac{\\rho^2}{2-\\rho}, \\frac{\\rho^2}{(1+\\rho)(2-\\rho)}, \\frac{\\rho^2}{1-\\rho^2}\\right) \\end{eqnarray} and .. math:: :nowrap: \\begin{eqnarray} \\xi_{0} = x_0 \\\\ \\xi_{1} = x_0 \\\\ y = x_0 \\end{eqnarray} **Theoretical guarantee**: A theoretical **upper** (empirically tight) bound can be found in [1, Theorem 1, eq. 4]: .. math:: f(x_n)-f_\\star \\leqslant \\frac{\\rho^{2(n+1)} L \\kappa}{2}\\|x_0 - x_\\star\\|^2. **References**: The triple momentum method was discovered and analyzed in [1]. `[1] Van Scoy, B., Freeman, R. A., Lynch, K. M. (2018). The fastest known globally convergent first-order method for minimizing strongly convex functions. IEEE Control Systems Letters, 2(1), 49-54. <http://www.optimization-online.org/DB_FILE/2017/03/5908.pdf>`_ Args: L (float): the smoothness parameter. mu (float): the strong convexity parameter. n (int): number of iterations. wrapper (str): the name of the wrapper to be used. solver (str): the name of the solver the wrapper should use. verbose (int): level of information details to print. - -1: No verbose at all. - 0: This example's output. - 1: This example's output + PEPit information. - 2: This example's output + PEPit information + solver details. Returns: pepit_tau (float): worst-case value theoretical_tau (float): theoretical value Example: >>> pepit_tau, theoretical_tau = wc_triple_momentum(mu=0.1, L=1., n=4, wrapper="cvxpy", solver=None, verbose=1) (PEPit) Setting up the problem: size of the Gram matrix: 7x7 (PEPit) Setting up the problem: performance measure is the minimum of 1 element(s) (PEPit) Setting up the problem: Adding initial conditions and general constraints ... (PEPit) Setting up the problem: initial conditions and general constraints (1 constraint(s) added) (PEPit) Setting up the problem: interpolation conditions for 1 function(s) Function 1 : Adding 30 scalar constraint(s) ... Function 1 : 30 scalar constraint(s) added (PEPit) Setting up the problem: additional constraints for 0 function(s) (PEPit) Compiling SDP (PEPit) Calling SDP solver (PEPit) Solver status: optimal (wrapper:cvxpy, solver: MOSEK); optimal value: 0.23892507617696113 (PEPit) Primal feasibility check: The solver found a Gram matrix that is positive semi-definite up to an error of 1.2421790162612716e-08 All the primal scalar constraints are verified up to an error of 2.3083153937765444e-08 (PEPit) Dual feasibility check: The solver found a residual matrix that is positive semi-definite All the dual scalar values associated with inequality constraints are nonnegative up to an error of 2.128560722969591e-09 (PEPit) The worst-case guarantee proof is perfectly reconstituted up to an error of 9.890478893964213e-08 (PEPit) Final upper bound (dual): 0.23892508270020568 and lower bound (primal example): 0.23892507617696113 (PEPit) Duality gap: absolute: 6.523244555634022e-09 and relative: 2.7302469292936613e-08 *** Example file: worst-case performance of the Triple Momentum Method *** PEPit guarantee: f(x_n)-f_* <= 0.238925 ||x_0-x_*||^2 Theoretical guarantee: f(x_n)-f_* <= 0.238925 ||x_0-x_*||^2 """ # Instantiate PEP problem = PEP() # Declare a smooth strongly convex func = problem.declare_function(SmoothStronglyConvexFunction, mu=mu, L=L) # Start by defining its unique optimal point xs = x_* and corresponding function value fs = f_* xs = func.stationary_point() fs = func(xs) # Then define the starting point x0 of the algorithm x0 = problem.set_initial_point() # Set the initial constraint that is the distance between x0 and x^* problem.set_initial_condition((x0 - xs) ** 2 <= 1) # Set the parameters of the Triple Momentum Method kappa = L / mu rho = (1 - 1 / sqrt(kappa)) alpha = (1 + rho) / L beta = rho ** 2 / (2 - rho) gamma = rho ** 2 / (1 + rho) / (2 - rho) delta = rho ** 2 / (1 - rho ** 2) # Run n steps of the Triple Momentum Method x_old = x0 x_new = x0 y = x0 for _ in range(n): x_inter = (1 + beta) * x_new - beta * x_old - alpha * func.gradient(y) y = (1 + gamma) * x_inter - gamma * x_new x = (1 + delta) * x_inter - delta * x_new x_new, x_old = x_inter, x_new # Set the performance metric to the function value accuracy problem.set_performance_metric(func(x) - fs) # Solve the PEP pepit_verbose = max(verbose, 0) pepit_tau = problem.solve(wrapper=wrapper, solver=solver, verbose=pepit_verbose) # Compute theoretical guarantee (for comparison) theoretical_tau = rho ** (2 * n) * L / 2 * kappa # Print conclusion if required if verbose != -1: print('*** Example file: worst-case performance of the Triple Momentum Method ***') print('\tPEPit guarantee:\t f(x_n)-f_* <= {:.6} ||x_0-x_*||^2'.format(pepit_tau)) print('\tTheoretical guarantee:\t f(x_n)-f_* <= {:.6} ||x_0-x_*||^2'.format(theoretical_tau)) # Return the worst-case guarantee of the evaluated method (and the reference theoretical value) return pepit_tau, theoretical_tau
if __name__ == "__main__": pepit_tau, theoretical_tau = wc_triple_momentum(mu=0.1, L=1., n=4, wrapper="cvxpy", solver=None, verbose=1)