Source code for PEPit.operators.cocoercive_strongly_monotone

from PEPit.function import Function


[docs] class CocoerciveStronglyMonotoneOperator(Function): """ The :class:`CocoerciveStronglyMonotoneOperator` class overwrites the `add_class_constraints` method of :class:`Function`, implementing some necessary constraints verified by the class of cocoercive and strongly monotone (maximally) operators. Warnings: Those constraints might not be sufficient, thus the caracterized class might contain more operators. Note: Operator values can be requested through `gradient` and `function values` should not be used. Attributes: mu (float): strong monotonicity parameter beta (float): cocoercivity parameter Cocoercive operators are characterized by the parameters :math:`\\mu` and :math:`\\beta`, hence can be instantiated as Example: >>> from PEPit import PEP >>> from PEPit.operators import CocoerciveStronglyMonotoneOperator >>> problem = PEP() >>> func = problem.declare_function(function_class=CocoerciveStronglyMonotoneOperator, mu=.1, beta=1.) References: `[1] E. Ryu, A. Taylor, C. Bergeling, P. Giselsson (2020). Operator splitting performance estimation: Tight contraction factors and optimal parameter selection. SIAM Journal on Optimization, 30(3), 2251-2271. <https://arxiv.org/pdf/1812.00146.pdf>`_ """ def __init__(self, mu, beta, is_leaf=True, decomposition_dict=None, reuse_gradient=True, name=None): """ Args: mu (float): The strong monotonicity parameter. beta (float): The cocoercivity parameter. is_leaf (bool): True if self is defined from scratch. False if self is defined as linear combination of leaf . decomposition_dict (dict): Decomposition of self as linear combination of leaf :class:`Function` objects. Keys are :class:`Function` objects and values are their associated coefficients. reuse_gradient (bool): If True, the same subgradient is returned when one requires it several times on the same :class:`Point`. If False, a new subgradient is computed each time one is required. name (str): name of the object. None by default. Can be updated later through the method `set_name`. Note: Cocoercive operators are necessarily continuous, hence `reuse_gradient` is set to True. """ super().__init__(is_leaf=is_leaf, decomposition_dict=decomposition_dict, reuse_gradient=True, name=name, ) # Store the mu and beta parameters self.mu = mu self.beta = beta if self.mu == 0: print("\033[96m(PEPit) The class of cocoercive and strongly monotone operators is necessarily continuous." " \n" "To instantiate a cocoercive (non strongly) monotone operator," " please avoid using the class CocoerciveStronglyMonotoneOperator\n" "with mu == 0. Instead, please use the class CocoerciveOperator.\033[0m") if self.beta == 0: print("\033[96m(PEPit) The class of cocoercive and strongly monotone operators is necessarily continuous." " \n" "To instantiate a non cocoercive strongly monotone operator," " please avoid using the class CocoerciveStronglyMonotoneOperator\n" "with beta == 0. Instead, please use the class StronglyMonotoneOperator.\033[0m")
[docs] def set_cocoercivity_constraint_i_j(self, xi, gi, fi, xj, gj, fj, ): """ Formulates the list of interpolation constraints for self (cocoercive strongly monotone operators). """ # Interpolation conditions of cocoercive operators class constraint = ((gi - gj) * (xi - xj) - self.beta * (gi - gj) ** 2 >= 0) return constraint
[docs] def set_strong_monotonicity_constraint_i_j(self, xi, gi, fi, xj, gj, fj, ): """ Formulates the list of interpolation constraints for self (cocoercive strongly monotone operators). """ # Interpolation conditions of strongly monotone operators class constraint = ((gi - gj) * (xi - xj) - self.mu * (xi - xj) ** 2 >= 0) return constraint
[docs] def add_class_constraints(self): """ Add interpolation constraints for self (cocoercive strongly monotone operator). """ self.add_constraints_from_two_lists_of_points(list_of_points_1=self.list_of_points, list_of_points_2=self.list_of_points, constraint_name="cocoercivity", set_class_constraint_i_j=self.set_cocoercivity_constraint_i_j, symmetry=True, ) self.add_constraints_from_two_lists_of_points(list_of_points_1=self.list_of_points, list_of_points_2=self.list_of_points, constraint_name="strong_monotonicity", set_class_constraint_i_j= self.set_strong_monotonicity_constraint_i_j, symmetry=True, )